
Rob Cribbie
Department of Psychology

York University

Part 2: Extended Introduction to R

 Although with most software packages learning
about a “matrix” is unnecessary, in R many of
the concepts explored while learning about
matrices apply to dealing with multiple
variables, dataset operations, etc.

 We will start with a brief discussion about
matrices before moving more specifically into a
discussion about datasets

> x<-matrix(data=c(1,4,5,2,4,5,6,2),nrow=2, ncol=4)
> x

 [,1] [,2] [,3] [,4]
[1,] 1 5 4 6
[2,] 4 2 5 2

> x[2,4]
 [1] 2

> rowSums(x)

[1] 16 13

Notice that by default the
Matrix was created “by
Columns” (1st col, 2nd col,
etc.)

x[row,column]

> x<-matrix(data=c(1,4,5,2,4,5,6,2),nrow=2, ncol=4,
byrow=TRUE)

> x
 [,1] [,2] [,3] [,4]
[1,] 1 4 5 2
[2,] 4 5 6 2

> mean(x[1,])
[1] 3

> var(x[,3])
[1] 0.5

This time the data
was entered “by row”

When a row or
column is blank,
all elements are

used

> x<-rbind(x, apply(X=x, MARGIN=2,
FUN=mean))
> x

 [,1] [,2] [,3] [,4]
[1,] 1.0 5.0 4.0 6
[2,] 4.0 2.0 5.0 2
[3,] 2.5 3.5 4.5 4

> rownames(x)<-c(1,2,'Mean')
> x

 [,1] [,2] [,3] [,4]
1 1.0 5.0 4.0 6
2 4.0 2.0 5.0 2
Mean 2.5 3.5 4.5 4

1 = rows
2 = columns

Bind rows
together

‘apply’ is also a
function

a<-matrix(c(2,1,2,4,3,5),nrow=2)
> a
 [,1] [,2] [,3]
 [1,] 2 2 3
 [2,] 1 4 5

> b<-matrix(c(2,4,6,1,1,3),nrow=3)
> b
 [,1] [,2]
 [1,] 2 1
 [2,] 4 1
 [3,] 6 3

When elements are left
out of a function, the

function uses the
defaults or figures out
the required number

Defaults to
“byrow = FALSE”
… defaults can
be found in the

help file

Figures out
that there

needs to be 3
columns

> t(a)
 [,1] [,2]
 [1,] 2 1
 [2,] 2 4
 [3,] 3 5

> a*b

Error in a * b : non-conformable arrays

> a%*%b
 [,1] [,2]
 [1,] 30 13
 [2,] 48 20

Matrix
Multiplication

Transpose (reverse
rows and columns)

* = Scalar
multiplication

 You can enter your data directly into R
> x<-rep(x=c(1,2),each=4)
same as > x<- c(1,1,1,1,2,2,2,2)
> y<-c(3,4,5,2,6,6,5,4)
> data<-data.frame(x,y)
> data

 x y
1 1 3
2 1 4
3 1 5
4 1 2
5 2 6
6 2 6
7 2 5
8 2 4

The first column
contains the row

numbers

Repeat

 The most important difference is that a
dataset can contain a mixture of non-
numeric and numeric variables, where a
matrix cannot (all elements must be of the
same form)

> mat<-matrix(data=c("a","b","c","d", 1, 2, 3,
5),nrow=1)

> mat
 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] "a" "b" "c“ "d" "1" "2“ "3" "5"

Numeric elements were
converted to character

elements

> a<-data.frame(matrix(c(1,3,1,4,2,6,2,8),ncol=2,byrow=TRUE))

> a
 X1 X2
 1 1 3
 2 1 4
 3 2 6
 4 2 8
> X1
Error: object 'X1' not found

> a$X1 # variable ‘X1' in dataset ‘a’
[1] 1 1 2 2

The $ separates the
dataset name from
the variable name

The variable names (X1,X2)
were automatically assigned

 You can also relate variables to each other
without them being in the same matrix/dataset
> iv<-c(1,1,1,1,2,2,2,2)
> dv<-rnorm(8)
> dv

[1] 1.4671261 -1.0878009 -1.0487529 -0.521493
[5] 1.9040232 0.5586128 2.8512241 -1.0348406

> mean(dv[iv==1])
[1] -0.2977303

> x<-c(2,5,4,2,8,6)
> y<-c(1,1,1,2,2,2)

> x[y=1]
 [1] 2

> x[y==1]
[1] 2 5 4

> x[y>1]
[1] 2 8 6

Note that x[y=1]
represents the first
instance of x where

y=1, whereas
x[y==1] represents
‘all x where y = 1'

 You can also read in external data files
 To read in a dataset from SPSS there are

multiple options, here are a couple of the
popular options
 Use the ‘read.spss’ command in the ‘foreign’ package (not

recommended as it is very fussy with variable names,
formats, and you need to data.frame the dataset after
creating it)

 Convert the SPSS file to a comma separated file (.csv) and
then open the file using read.csv(file=” “)
 This is recommended since it is easy to convert to .csv in SPSS

and is very flexible

 In general, it is recommended that you convert
datasets to .csv before opening them in R
◦ Almost all spreadsheet and statistical software

packages will let you save your file as a .csv file
 To browse your directories for a file use the

‘file.choose()’ option (with a read statement)
◦ newdata<-read.csv(file.choose())

 Also note that if you are specifying the exact file
name, that the slashes are backward to Windows
◦ > newdata<-read.csv(file="C:/My Documents/Robs

Work/SCS/R Course/testdata2.csv")

 Example
◦ In this example a researcher is interested in exploring

whether sex (male,female) or community size (small,
large) relate to the amount of recycling performed by
individuals

After running this
line a ‘select file’

box appears

‘head’ function
gives the first six

lines of the dataset

Variable Names

 The following command will pop up a
spreadsheet that allows you to change
dataset values, variable names, etc.

> edit (dat1)
 However, when you close the spreadsheet

nothing is saved because you are not saving
(putting, <-) your changes into an object

 In order to save our changes we must specify
the name of the dataset that will receive the
changes

> dat2 <- edit(dat1)

 In some instances we want to work with just a
subset of the original dataset
◦ This could be done with indexing, but subsetting is

very straightforward
> dat2<-subset(dat1, Sex=='Male')
> dat2
 Sex Commsize Altruism
1 Male Small 3
2 Male Large 6
3 Male Small 8
4 Male Large 4

 > mean(newdat$Recycle)
[1] 4.25

 > mean(newdat$Recycle[newdat$Sex=="male" &

newdat$Commsize=="small"])
[1] 3

 > var(newdat$Recycle[newdat$Sex=="female" &

newdat$Commsize=="large"])
[1] 4.5

 >hist(newdat$Recycle, col="blue")

 Check normality and variance homogeneity
assumptions
◦ > shapiro.test(newdat$Recycle)
 Shapiro-Wilk normality test, data: newdat$Recycle
W = 0.959, p-value = 0.8006

◦ > library(car)
◦ # ‘car’ is a package that I previously installed

◦ > leveneTest(newdat$Recycle,newdat$Sex)
 Levene's Test for Homogeneity of Variance (center = median)

 Df F value Pr(>F)
 group 1 1.5 0.2666
 6

 What if we wanted to verify that the distributions
in each commsize are normal in shape (this
would not make much sense with n=4)
 > tapply(newdat$Recycle,newdat$Commsize,shapiro.test)

$large
Shapiro-Wilk normality test data: X[[1L]]
W = 0.9714, p-value = 0.85

$small
Shapiro-Wilk normality test data: X[[2L]]
W = 0.9714, p-value = 0.85

‘tapply’ is very
handy any time

you need to look
at a statistic
(e.g., mean)

across multiple
levels or cells of
other variables

 One of the nice features of R is that when a
variable is designated as a “factor”, R performs
some operations that are either safeguards or
helpful to the user

 A couple examples are:
◦ Not permitting numeric operations on factors
 E.g., mean of factor
◦ Automatically assigning dummy variables in regression

◦ > is.factor(newdat$Sex)
[1] TRUE

◦ > levels(newdat$Sex)
[1] "female" "male"

◦ > cor(newdat$Sex,newdat$Recycle)
Error in cor(newdat$Sex, newdat$Recycle) :
 'x' must be numeric

◦ > library(ltm) #package I installed
◦ > biserial.cor(y=newdat$Sex, x=newdat$Recycle)
 [1] 0.4493585

> a
 X1 X2
 1 1 3
 2 1 4
 3 2 6
 4 2 8

> write.csv(a, file='c:/Documents and Settings/Rob/My
Documents/RCourse/newdat.csv', row.names=FALSE)

> write.csv(a, file=‘newdat.csv', row.names=FALSE)

It is important to add
row.names=FALSE if you

want to open the dataset in
other software programs

Don’t forget the
forward slashes (/)

If you have already
set your working

directory

 One of the main advantages of R is its flexibility
 For example, R makes it very easy to write your

own functions
◦ Here is a (completely unnecessary) function to take the

mean of a set of observations
– >robsmean<-function (x) {
result<-sum(x)/length(x)
return(result)
}
◦ >robsmean(c(3,2,4))

[1] 3

	Introduction to R �and RStudio
	Matrices
	Matrices
	Matrices, cont’d
	Matrices, cont’d
	Matrix Shortcuts
	Introduction to Matrix Operations
	Datasets
	What’s the Difference between a Dataset and a Matrix?
	Referencing Variables in Datasets
	Relating Variables to Each Other
	The Problem of “=” and “==”
	Opening Existing Datasets
	Opening Existing Datasets
	Working with Datasets
	Working with Datasets, cont’d
	Editing a Dataset
	Editing a Dataset
	Subsetting a Dataset
	Basic Statistics on a Dataset
	Simple Plot
	Simple Assumption Checks
	Assumption Checks
	Working with Factors
	Working with Factors
	Saving an R Dataset or Matrix
	Writing Functions

