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Example Data Set

» A researcher is interested in evaluating two
therapies for perfectionism; specifically,
investigating whether they will be effective in
reducing levels of perfectionism

- Levels of perfectionism are recorded at baseline
(perfl), after 1 month of therapy (perf2) and after 2
months of therapy (perf3) for each experimental group
(General Stress, CBT) and a control group

» At baseline the researcher also records levels of
depression and the sex of each subject




Dataset

> head(dat)
sex group depl perfl perf2 perf3
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Frequencies

» The ‘table’ function is helpful for obtaining
frequencies for single or multiple variables

> table(dat§sex) > table(dat$sex,dat$group)

cbt control stress
fom £ 13 15 12
40 50 m 17 15 18




Frequencies

» We can also obtain simple graphical
descriptions of frequencies

> fgroup<-table(dat$group)
> barplot(fgroup)

]
™

o
-

W —

o -

cht control stress
‘\:\m\



Frequencies

» Or, slightly more sophisticated graphical
descriptions of frequencies

> freq<-table(dat$sex, dat$group)
> barplot(freq, legend=rownames(freq))
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Basic Descriptive Statistics

» There are numerous ways to obtain basic
descriptive statistics, for example:
o summary(x)
> max(x)
> min(x)
> range(x)
> mean(x)
> median(x)
> var(x)
> sd(x)
> quantile(x,probs=)

» These can also be used with all the

| subsetting/indexing we previously discussed




Basic Descriptive Statistics

» However, there are also packages with functions
for obtaining a lot of descriptive info quickly
- E.g., ‘describe’ function in the ‘psych’ package

> library(psych)
> describe(dat)
vars n mean sd median trimmed mad min max range

sex® 1 90 1.56 0.50 2.00 1.57 0.00 1.00 2.00 1.00
group® 2 90 2.00 0.82 2.00 2.00 1.48 1.00 3.00 2.00
depl 3 90 81.51 16.79 80.08 80.83 17.61 49.25 129.48 80.24
perfl 4 90 80.53 9.79 80.24 80.09 8.73 59.67 111.19 51.52
perf2 5 90 72.55 13.39 /1.96 72.06 11.65 43.80 109.34 65.54
perf3 6 90 69.50 14.83 68.09 68.54 15.17 40.81 119.09 /8.28

skew kurtosis se
sex® -0.22 -1.97 0.05
group* 0.00 -1.53 0.09
depl 0.43 -0.30 1.77

0.50 0.40 1.03

0.37 0.26 1.41

0.63 0.37 1.56




Basic Descriptive Statistics

» A similar function in the ‘psych’ package also
allows us to obtain descriptive statistics
separated by a grouping variable

This is just the first few lines,

several statistics and the info

> describeBy(dat, sex) for males is left out
group: T
vars n mean sd median trimmed mad
sex® 140 1.00 0.00 1.00 1.00 0.00
group* 2 40 1.98 0.80 2.00 1.97 1.48
depl 3 40 81.36 18.32 80.62 80.61 20.18
perfl 4 40 79.47 10.28 79.33 79.24 8.28
perf?2 5 40 72.30 13.70 72.96 /1.76 13.72
6 40 69.66 14.76 68.21 68.78 15.22

perf3

=



Pearson Correlation

» Hypothesis #1: Are baseline depression and
perfectionism scores correlated?

> cor.test(dat$perfl,dat$depl)

Pearson's product-moment
correlation

datar: dat$perfl and dat$depl
Tt = 6.047, df = 88, p-value =
3.493e—-08
alternative hypothesis: true correlation
1s not equal to O
95 percent confidence Tinterwval:
O.3770138 0.6733433
sample estimates:
cor
0.541803




Rank-based Correlation

» Hypothesis #1: Are baseline depression and
perfectionism scores correlated
o Spearman’s rank-based correlation coefficient

> cor.test(dat$perfl,dat$depl,method="sp
earman’)

Spearman’'s rank correlation rho

data: dat$perfl and dat$depl
S = 53726, p-value = 1.996e-08

alternative hypothesis: true rho 1is not
equal to O

sample estimates:
rho

0.55/77561




Simple Regression

» Hypothesis #2: Can we predict posttest
perfectionism scores from pretest depression
scores?

» Scatterplot
> >plot(dat$depl,dat$perf3)
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Simple Regression, cont’'d

» Create a linear model object and print a
summary of the results

> modl<-Tm(perf3 ~ depl, data=dat)
> summary (modl)

call:
Tm(formula = perf3 ~ depl, data = dat)

Residuals:
M1 n 1@ Median 3Q Ma x
-26.540 -10.605 -0.683 9.031 47 . 663

Ccoefficients:

Estimate std. Error t value Pr(|lt|)
(Intercept) 45.47798 7 .38149 6.161 2.12e-08 #=¥¥*
depl 0.29476 0.08871 3.323 0.0013 ==
signif. codes:
O “=**’ Q.001 “*=*’ O0.01 “*’ 0.05 “.’ 0.1 “ ’ 1

Residual standard error: 14.06 on 88 degrees of freedom
Multiple R-squared: 0.1115, Adjusted R-squared: 0.1014
F-statistic: 11.04 on 1 and 88 DF, p-value: 0.001301

S




Simple Regression, cont’d

» Diagnostics are available for identifying

Freguency

normality issues

> hist(resid(mod1)) Normal probability
(qq) plots are also

available

Histogram of resid(mod1)
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Regression Diagnostics

» It is also easy to produce several diagnhostic

plots simply by typing:

- plot(mod)

- Where you replace ‘mod’ with the name of your model

» These plots include:

- Residuals vs Fitted

- Normal Probability Plot of the Residuals

> Scale vs Location Plot

- Residuals vs Leverage




Simple Regression, cont’d

» Regression Diagnostics

- We can compute Studentized Deleted Residuals to
identify outlying cases in the solution

- There are also tools for identifying cases with extreme
leverage

- Below case 31 seems discrepant

> |1brary(car)
> outlierTest(modl)

rstudent unadjusted p-value Bonferonni p
31 3.643018 0.00045739 0.041165




Simple Regression, cont’d

» It is also important to identify influential
observations (e.g., Cook’s Distance)

» This plot indicates which cases exceed a cutoff
for Cook’s distance of 4/(N - p) where p is the
number of predictors

- >cutoff <- 4/(length(perf1)-1)
- >plot(mod1, which=4, cook.levels=cutoff)

Based on fourth plot
created when you

plot a model object
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Multiple Regression

» Hypothesis #3: Can posttest perfectionism
scores be predicted from depression scores,
controlling for pretest perfectionism?

> mod2<-Im(perft3 ~ depl + pertl, data=dat)
> summary (mod2)

call:
Tm(formula = perf3 ~ depl + perfl, data = dat)

Residuals:
Min 1Q Median 3Q Max
-27 .4451 -9.1199 -0.8234 10.2411 25.3162

Coefficients:
Estimate std. Error t value Prd|ltl)

(Intercept) -4.75514 10.47354 -0.454 O0.651

depl 0.00531 0.08938 0.059 0.953

perfl 0.91674 O.15337 5.977 4.87e-08 #=+F*

signif. codes: o “***’ ©Q.001 “‘**’ Q.01 “*’ 0O0.05 ‘.7 o0.1 °“ ' 1
Residual standard error: 11.9 on 87 degrees of freedom
Multiple R-squared: 0.3701, Adjusted R-squared: 0.3557
F-statistic: 25.56 on 2 and 87 DF, p-value: 1.851e-09




Multiple Regression Diagnostics

» All of the same diagnostics used in a simple
regression can also be applied in a multiple
regression

» For example:
plot(mod2,which=4,cook.levels=cutoff)
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Multiple Regression Diagnostics

» There are also diagnostics that are unique to
multiple regression, such as collinearity diagnostics

- Time 1 Depression and Perfectionism do not seem to be too
highly related

> vit(mod2)
depl perfl
1.415529 1.415529




Interactions in Multiple Regression

dat$deplc<-dat$depl-mean(dat$depl)
dat$perflc<-dat$perfl-mean(dat$perfl)

mod3<-Tm(perf3 ~ deplc + perflc + deplciperflc, data=dat)
dat$deplc<-dat$depl-mean(dat$depl)
dat$perflc<-dat$perfl-mean(dat$perfl)

mod3<-Tm(perf3 ~ deplc + perflc + deplc:perflc, data=dat)
mod3<-Tm(perf3 ~ deplc*perflc, data=dat)

summary (mod3)
cal These two models are identical We center the
a .

variables first
Im(formula = perf3 ~ deplc * perflc, data = dat)

VV VY VYV VY

to enhance
interpretation

Residuals:
Min 1Q Median 3Q Max
-27.1428 -8.2889 -0.1236 6.9596 23.4833

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 69.746849 1.296595 53.792 <« 2e-16 **%*
deplc -0.050374 0.067761 -0.743 0.459
perflc 0.997633 0.143303 6.962 6.31e-10 #%¥*
deplc:perflc -0.007919 0.005788 -1.368 0.175




There are infinite numbers of

. cool stats, plots, etc. that you
I nte raCtIO n PI Ot can find just by playing around

with R

o > library(effects)
o > plot(effect(term="dep1c:perflc’",;mod=mod3,default.levels=3))
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Logistic Regression

» Imagine that we wanted to determine if a
perfectionism diagnosis (normal, clinical) at time
1 is related to depression at time 1

» In this case we might want to use a logistic
regression, a type of generalized linear model

(glm)
» First, we will split our time 1 perfectionism

scores into normal/clinical 90 e
« > library(Hmisc) clinical cutoff

- > dat$perfdich<-cut2(dat$perfl,cuts=90)
- > levels(dat$perfdich)<-c("normal”,"clinical®)

cut2 performs a
split at the

specified cutoff



Logistic Regression

> modd<- glm(perfdich~depl, family=binomial(link="Tlogit"), data=dat)
> summary (mod4

call:
glm(formula = perfdich ~ depl, family = binomial(link = "logit"),
data = dat)

Deviance Residuals:
Min 19 Median 3Q Max
-1.4817 -0.5411 -0.3710 -0.2329 2.2472

Generalized Linear

Model (gim)

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.70958 1.95033 -3.953 7.72e-05 =%«
depl 0.06880 0.02088 3.295 0.000983 =#==*




Independent Samples r-tests

» Hypothesis #4: Is there a difference between
males and females on pretest perfectionism?

» In this case we would likely want to use a t-test

> t.test(perfl~sex, data=dat, var.equal=TRUE)

Two Sample t-test

data: perfl by sex
t = -0.9167, df = 88, p-value = 0.3618

alternative hypothesis: true difference i1n\means
1s not equal to O

95 percent confidence interval: This statement is
-6.034613 2.224762 required since the
sample estimates: default test is the Welch

mean in group f mean in group m test that does not
79.47360 81.37852 assume equal variances

i




Independent Samples r-tests

» We can also run a t-test by specifying the
groups to be compared

> t.test(perfllsex == "m"'],perfl[sex == "f"], var
.equal=TRUE, data=dat)

Two Sample t-test

data: perfllsex == "m"] and perfl[sex == "f"]
t = 0.9167, df = 88, p-value =
0.3618

alternative hypothesis: true difference in means
1s not equal to O
95 percent confidence interval:
-2.224762 6.034613
sample estimates:
mean of Xx mean of vy
81. 37852 -47360




Independent Samples t-tests Under
Variance Heterogeneity

» Welch’s two independent samples t-test

o This is the default since this a better overall test than
the traditional t-test

> t.test(perfl~sex, data=dat)

welch Two Sample t-test

data: pertl by sex
Tt = -0.9075, df = 80.079,
p-value = 0.3669

alternative hypothesis: true difference
in means 1s not equal to O
95 percent confidence 1nterwval:
-6.082220 2.272369
sample estimates:
mean 1n group T mean 1n group m
7947360 81.37852




Independent Samples t-tests Under
Nonnormality

» Wilcoxon-Mann-Whitney nonparametric two
independent samples test

> wilcox.test(dat$perfl~datdsex)

. . This time we
wilcoxon rank sum test with skipped the

continuity correction ‘data’ statement

and specified the

dataset for each

data: dat$perfl by dat$sex variable
W = 905, p-value = 0.4429
alternative hypothesis: true location

Ishift 1s not equal to O




What about a t-test for Nonnormality
and Variance Inequality?

» Several procedures have been proposed,
although the Welch ttest on trimmed means
has garnered the most attention

» Rand Wilcox has written functions that
accompany his texts on robust statistics that
includes a function for computing the trimmed
Welch ¢ (which was developed by Yuen and often
referred to as the Yuen test)

- We will use a package called ‘WRS2’ that makes
~available many of Wilcox’s most popular functions




Working with Trimmed Means

» Since we will be testing the null hypothesis that
the population trimmed means are equal, it is
informative to look at the trimmed means

> mean(datSperflidatfsex=="m"], tr=.2)

[1] 80.44451

> tapply(datSperftl, dat§sex, mean, tr=.2)
f m

79.06?7 80.44451




Yuen Test

» Note that like many of Wilcox’s functions, the
output is not very fancy

Population trimmed
means do not differ

significantly

> yuen(dat$perfl~dat$sex)
call:

yuen(formula = dat$perfl ~ dat$sex)

Test statistic: 0.7588, p-value = 0.45194
95 percent confidence 1interval:
-5.108 2.3125

p—



Paired Samples t-tests

» Hypothesis #5: Is there a difference between pre
and post perfectionism scores?

> t.test(dat$perfl, dat$perf3, paired=TRUE)

Paired t-test

data: dat$perfl and dat$perf3
t = 8.8712, df = 89, p-value =
6.942e-14
alternative hypothesis: true difference 1n
means 1s not equal to O
95 percent confidence interval:
8.55/7716 13.49//733
sample estimates:
mean of the differences
11.02772

R




Paired Samples under Nonnormality

» If the distribution of difference scores is not
normally distributed, the Wilcoxon signed ranks

test can be much more powerful than the paired
samples t-test

> wilcox.test(dat$perfl, dat$perf3, paired=TRUE)

wilcoxon signed rank test with
continuity correction

data: dat$perfl and dat$perts3
V = 3676, p-value = 5.732e-11

_ alternative hypothesis: true location shift 1s not
Nequal to O

_I.i.,-f-:";' \ AARARRRRN
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