Introduction to R and RStudio

Part 5: Introduction to Graphics in R

Rob Cribbie Department of Psychology York University

http://www.psych.yorku.ca/cribbie/r_course_trent.html

Graphics in Data Analysis

- Graphics are an extremely important part of data analysis
 - However, difficulties producing appropriate or required graphics means that many researchers do not take the time to "visualize" their data
- R has excellent graphical capabilities
 - For those who want more on graphics I recommend:
 - Paul Murrel's book "R Graphics"
 - Hadley Wickham's book "ggplot2
 - Googling graphics in R

Dataset

- A researcher is interested in evaluating two therapies for perfectionism; specifically investigating whether they will be effective in reducing levels of perfectionism
 - Levels of perfectionism are recorded at baseline, 1 month (mid intervention) and 2 months (post intervention) for each experimental group (CBT, General Stress) and a control group
- The researcher also records depression at baseline, as well as the sex of the subject

FYI: Generating the Data

The following commands were used to generate the data set:

```
sex<-rep(c("m","f","m","f"),c(17,30,18,25))
group<-rep(c("cbt","stress","control"), c(30,30,30))
perf1<-rnorm(90, mean=40, sd=15)
dep1<-perf1 + rnorm(90, sd=30)
perf2<-perf1 - 7 + rnorm(90, sd=10)
perf3<-perf2 - 3 + rnorm(90, sd=10)
perf2[group=="control"]<-perf2[group=="control"]+6
perf3[group=="control"]<-perf3[group=="control"]+3
newdat<- data.frame(sex,group,dep1,perf1,perf2,perf3)</pre>
```

Simple Histogram

- We can produce a simple histogram with the command hist()
- For example, we might want to look at the frequencies for scores on depression
 - hist(newdat\$dep1)

Customizing a Histogram

- > hist(newdat\$perf1, main="Baseline Perfectionism", xlab="Baseline Perfectionism", col="blue", xlim=c(0,120),ylim=c(0,40))
- > rect(70,0,100,30, border="red", lwd=4)
- > text(85,35, "At Risk Levels", col="red")

Baseline Perfectionism

Multiple Plots

Two rows and two columns for the graphical space

- > par(mfrow=c(2,2))
- > hist(newdat\$dep1)
- > hist(newdat\$perf1)
 > hist(newdat\$perf2)
- > hist(newdat\$perf3)

Ψ

9

ιΩ.

 \odot

Frequency

Histogram of perf3

Simple Boxplot

> boxplot(newdat\$perf2)

Fancier Boxplot

>boxplot(perf2~group*sex, col="purple", xlab="Group",
 ylab="perf2", data=newdat)

Obtaining information about outliers with the 'boxplot' function

- Using the values 'out' and 'group' we can print the cases that are extreme
 - > boxplot(perf1~sex, data=newdat)\$out
 - [1] 81.441446 2.163886 2.993359
 - > boxplot(perf1~sex, data=newdat)\$group
 [1] 1 2 2

We are again utilizing information (values) available via the functions

Obtaining information about outliers with the 'boxplot' function

- The 'out' and 'group' options can also be used with more complex boxplots
 boxplot(perf2~group*sex,col="purple", xlab="Group",ylab="perf2",data=newdat)\$out [1] -9.862943 2.022603
 boxplot(perf2~group*sex,col="purple", xlab="Group",ylab="perf2",data=newdat)\$group [1] 2 5
 - The "2" and "5" represent cases in the combination of group and sex (e.g., 'male, stress', 'female,stress')

Saving and Copying Plots

Using the 'plot' tab in the extras panel, you can easily save your plot in many different formats, or copy it to the clipboard

Creating a 'pdf' of a Plot with Text

>pdf("boxplot.pdf")

>boxplot(perf2~group*sex,col="purple",xlab="Group",ylab="
perf2", data=newdat)
> dov. off()

>dev.off()

Creating a new pdf called boxplotb
 pdf("boxplotb.pdf")
 par(mfrow=c(2,2))
 hist(newdat\$perf1,col="blue")
 hist(newdat\$perf2,col="red")
 hist(newdat\$perf3,col="pink")
 hist(newdat\$dep1,col="green")
 >dev.off()

boxplot.pdf

boxplotb.pdf

plot()

- plot() is the main graphing function in R
- Automatically produces simple plots for vectors, data frames, relationships, etc.
- It includes several options for customization
- For example, what if we plot() our entire data set:
 - plot(newdata)

Plotting a Subset of the Variables in the Dataset

plot(newdat[-c(1,2,3)], main="Relationships among Perfectionism Variables")

Relationships among Perfectionism Variables

Simple Bivariate Plots

plot(newdat\$perf1,newdat\$perf2, main="Relationship between Baseline and Time 2 Perfectionism")

Relationship between Baseline and Time 2 Perfectionism

Plotting Characters in R

The main plotting characters are represented by the command "pch" and range from 1:25

Simple Bivariate Plot with Customized Plotting Character

plot(perf1,perf2, main="Relationship between Baseline and Time 2 Perfectionism",pch=8, col="green", data=newdat)

Relationship between Baseline and Time 2 Perfectionism

Adding "rug" plots

- rug(newdat\$perf1,side=1)
- rug(newdat\$perf2,side=2)

Relationship between Baseline and Time 2 Perfectionism

Adding a Regression Line to a Plot

- mod1<-Im(perf3~perf1)
- plot(perf1,perf3)
- abline(mod1)

Diagnostic Plots for a Model

par(mfrow=
c(2,2))
plot(mod1)

Scatterplot from the 'car' Package

sex

o f

scatterplot(perf3~perf1*sex, main="Scatterplot with Separate Regression Lines for Groups")

Scatterplot with Separate Regression Lines for Groups

perf1

Added Variable Plots (i.e., partial regression coefficient plots)

- par(mfrow=c(2,1))
- plot(perf1,perf3)
- mod2<-lm(perf3~perf1+dep1)</pre>
- av.plots(mod2)

Lattice Graphics

- "lattice" is an add-on R package
- lattice provides a high-level system for statistical graphics that is independent of traditional R graphics
- It is modeled on the Trellis suite in S-PLUS, and implements most of its features

Lattice Graphics, cont'd

- lattice uses the 'grid' package (Murrell, 2005) as the underlying implementation engine, and thus inherits many of its features by default
- The nature of the graphics depends on the type of display, but common options are:
 - primary variables: represent the primary display
 - conditioning variables: divides data into subgroups, each of which are presented in a different panel
 - grouping variables: subgroups are contrasted within panels by superimposing the corresponding displays

histogram(~ perf1 | group)

Lattice Examples: Spaghetti Plot

longdata1<-reshape(newdat,varying=list(4:6),direction="long",v.names=c("perfect")) xyplot(perfect~time,groups=id,type="l",data=subset(longdata1,id<50))

xyplot(perf3~perf1,groups=sex,type=c("r","p","smooth"))

xyplot(perf3~perf1|group,type=c("r","p","smooth"),layout=c(1,3))

xyplot(perf3~dep1|group+sex,type=c("r","p","smooth"),layout=c(2,3))

Lattice Graphics Examples cloud(perf3~perf1*dep1 | sex, main="3-dimensional Scatterplot", data=newdat)

3-dimensional Scatterplot

ggplot2

- > gg stands for the 'Grammar of Graphics'
 - This also implies that there is a grammar to the composition of statistical plots
 - By controlling that grammar you can control the nature of your plots
 - In fact, control a wide variety of plots with a fair amount of precision and options
 - For example, you can control the type of plot, color of elements, shape of elements, position of elements, axis characteristics, labels, titles, grouping factors, etc.

Getting Started with ggplot2

- There is a function within the ggplot2 package called 'qplot' that does quick plots of various types of graphs
 - However, we will learn ggplot2 by using the more customizable 'ggplot' function
- The ggplot function takes two primary arguments:
 - data
 - The data frame containing the data
 - aes
 - The aesthetics (i.e., variables, plot options, etc.)

Getting Started with ggplot2

- Example:
 - >plot1 <-ggplot(newdat,aes(dep1))
 - At this point you have not added any layers so you can't generate a plot
 - However:
 - >plot1 + geom_histogram()

Geometric Objects (geoms)

- Geoms are the shapes that are added to the plot layer(s)
 - For example:
 - geom_histogram()
 - geom_boxplot()
 - geom_bar()
 - geom_point()
 - geom_errorbar()

 Since each geom contains () at the end, each geom can also accept new aesthetic statements (e.g., fill, colour)

Adding and Improving Layers

- > plot1 <-ggplot(newdat,aes(dep1))</pre>
- plot1+geom_bar(colour='black',fill='red') + ylab("Frequency") + xlab("Depression") + labs(title="Histogram of Depression")

What About Multiple Variables

 ggplot (newdat,aes (dep1,perf1)) + geom_point + labs(x="Depression", y="Perfectionism", title="Relationship b/w Perfectionism and Depression")

Adding options to a scatterplot

 ggplot(newdat,aes(dep1,perf1,colour=group)) + geom_point() + stat_smooth(method=lm)) + labs(x="Depression", y= "Perfectionism", title ="Relationship b/w Perfectionism and Depression")

Boxplots

- ggplot(newdat,aes(group,perf1))+geom_boxp lot(fill='blue')
 - But what about the small x-axis tick labels

Boxplots

This is just one of numerous ways of controlling the display of the plot

ggplot(newdat,aes(group,perf1)) +
geom_boxplot(fill='blue') +
theme(axis.text.x=element_text(size=20))

Adding Error Bars to a Plot of Group Means

ggplot (newdat,aes(group,dep1)) + stat_summary (fun.y=mean, geom='bar', fill="red") + stat_summary (fun.data =mean_cl_boot, geom="errorbar") + ylab ("Mean Depression") + xlab ("Treatment Group") + coord_cartesian (ylim=c(30,50))

Adding Error Bars to a Plot of Group Means

What if we have more than one grouping variable?

> ggplot(newd,aes(group,dep1,fill=sex)) +
stat_summary(fun.y=mean, geom=
'bar',position= "dodge") +
stat_summary(fun.data= mean_cl_boot,
geom="errorbar", position=
position_dodge()) + ylab("Mean Depression")
+ xlab("Treatment Group") +
coord_cartesian(ylim=c(20,60))

What if we have more than one grouping variable?

