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Abstract 

Researchers in psychology are frequently confronted with the issue of analyzing multiple 

relationships simultaneously. For example, this could involve multiple outcome variables or 

multiple predictors in a regression framework. Current recommendations typically steer 

researchers toward familywise or false discovery rate Type I error control in order to limit the 

probability of incorrectly rejecting the null hypothesis. Stepwise modified-Bonferroni 

procedures are suggested for following this recommendation. However, longstanding 

arguments against multiplicity control, combined with a modern distaste for null hypothesis 

significance testing, have warranted revisiting this debate. This paper explores both sides of the 

multiplicity control debate with the goal of educating concerned parties regarding best 

practices for conducting multiple related tests. 
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Multiplicity Control, School Uniforms, and other Perplexing Debates 

 While I was in graduate school, I remember attending a talk where the speaker noted in 

the introduction that questions surrounding ‘Bonferroni or the like’ were off limits. As with 

whether or not a school should adopt uniforms, multiplicity issues are especially perplexing and 

often create much confusion for researchers. Take, for example, this recent question on 

ResearchGate: “It seems journals are considering Bonferroni adjustment for p-values of terms 

within a multiple regression model. Has anyone else noticed this? What do you think of the 

trend?” (Maltenfort, 2013). This confusion is especially problematic since using multiple 

outcomes, multiple predictors or multiple treatments in a study both increases the scope of the 

research and maximizes efficiency (Blakesley et al., 2009). As Wilkinson and the Task Force on 

Statistical Inference note, “in many areas of psychology, we cannot do research on important 

problems without encountering multiplicity. We often encounter many variables and many 

relationships” (1999, p. 599). As a statistical consultant, I have dealt with numerous cases 

involving multiplicity issues and the one thing that almost all have in common is confusion over 

which form (if any) of multiplicity control is necessary.  

 Although these difficult decisions regarding multiple testing fall most directly on the 

shoulders of the researchers, they are also experienced by journal editors, reviewers, and 

manuscript readers as they try to interpret the magnitude of the findings of single relationships 

within a study containing evaluations of multiple relationships. This paper explores the 

multiplicity issue in psychological research with the goal of making concerned parties more 

cognizant of the complex issues involved in selecting an appropriate multiple testing strategy.  
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This paper will highlight two extremely common situations which involve multiple 

testing. The first is multiple outcomes. It is rare for researchers to conduct a study with only a 

single primary dependent variable and therefore typically separate tests are conducted on each 

outcome. For example, a researcher might conduct ten one-way ANOVAs separately on ten 

different outcome variables, resulting in ten significance tests. The second situation is multiple 

predictors in regression. Again, with multiple predictors, separate tests on each predictor are 

almost always conducted. For example, one might explore four different predictors of 

depression, and statistical tests on each of the coefficients associated with each predictor 

would be of interest.  

Although multiple outcomes and multiple predictors were selected as examples for 

discussing issues surrounding multiplicity, the same ideas also apply to other multiplicity 

settings (e.g., voxel-wise activation tests in fMRI). In other words, these two situations are 

obviously not the only scenarios in which important multiplicity control decisions need to be 

made, but they provide a platform for introducing the issues involved. In general, any time 

multiple related of tests of significance are conducted, issues surrounding multiplicity control 

will arise. 

 First, multiplicity is defined and the primary issues surrounding multiplicity control are 

outlined. To do this we revisit one of the most common settings for multiplicity, namely 

comparing multiple groups on an outcome variable. Second, a discussion of the multiplicity 

issues involved in each situation is provided. These first two sections are meant to provide the 

reader with a snapshot of current practice and options for controlling for multiplicity in 

psychological research. The paper ends by tying together current thinking on multiplicity 
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control with current thinking on null hypothesis significance testing. The paper aims to raise 

awareness regarding the issues and potential solutions surrounding multiplicity control and 

thus provide involved parties with more information on which to make important multiplicity 

decisions. The overarching goal is to make concrete recommendations regarding the adoption 

of multiplicity control in psychological research. 

Multiplicity/Multiplicity Control 

 Multiplicity (in the statistical sense) refers to testing multiple hypotheses with the goal 

of isolating those which are statistically significant. Let’s say we are comparing the speed at 

which participants walk, where participants are separated into four groups. Each group is 

primed with a different list of words; the word lists related to a race (e.g., winner, fast), fast 

vehicles (e.g., speedboat, motorcycle), seniors (e.g.,  grey, cane) or control (e.g., book, chair). 

The research hypothesis is that priming will affect subsequent walking speeds (see Bargh, Chen 

& Burrows, 1996). Our interest might be in all of the pairwise comparisons (race vs fast vehicles, 

race vs seniors, etc.) in order to isolate exactly which differences in priming lists result in 

differences in walking speed. Thus, we are testing six pairwise null hypotheses, each comparing 

the population means for two different types of word lists (e.g., H0: μrace = μfast; H0: μrace = 

μseniors). Each test will be conducted with a specific probability of making a Type I error (α), 

which is often called a false positive and represents the acceptable probability of concluding 

that a difference in the population occurs when in fact the population means do not differ.  

 Now the tricky part: if we conduct multiple tests, each with a Type I error probability αT 

(α level for each test), then the overall probability of a Type I error (α’) across all six tests will be 

higher than the probability of a Type I error for each test. If all of the tests are independent, α’ 
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approaches 1 – (1 – αT)T, where T represents the number of tests conducted. It is important to 

consider how strongly related the tests are that you are conducting, because the strength of 

the relationships among the tests affects the degree of inflation of α’. Pairwise comparisons are 

related because some of the test share the same variable (e.g., the tests associated with the 

hypotheses H0: μrace = μfast and H0: μrace = μseniors are related because they share the variable 

‘rate’; they might also be related because they use a common denominator, but this depends 

on the nature of the test statistic adopted). As the correlation among the tests increases, α’ will 

be reduced, with α’ = αT = α if the tests were (but realistically speaking never will be) all 

perfectly correlated (i.e., the decisions are always identical for all tests). In other words, as the 

correlation among the tests increases, the overall inflation in the Type I error rate decreases. 

Obviously α’ also depends on how many of the null hypotheses are true; for example if none 

are true then α’ = 0. [We will dwell on this issue later in the paper.] 

 For our pairwise comparison problem above, one solution is to treat each test as 

separate and to ignore the fact that multiple tests of significance are being conducted. In this 

situation, we are controlling the probability of a Type I error separately for each test, so we can 

label our multiplicity control strategy ‘per test’ Type I error control (αPT). This is the simplest 

form of multiplicity control. As Hancock and Klockars (1996) playfully proposed, if αPT control 

was unilaterally adopted, all multiple testing would easily be conducted and multiple testing 

researchers would be unemployed. 

 A second solution is to control the probability of at least one Type I error at α across all 

six comparisons (i.e., split up α across all of the tests). Since we are controlling the rate of Type I 

error over the family of six pairwise hypotheses, this method of Type I error control is often 
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referred to as familywise error control (αFW). The term family refers to the set of tests over 

which we are concerned about Type I error inflation (e.g., pairwise comparisons, separate tests 

on each outcome variable, all slope coefficients in a multiple regression). The most popular 

method of αFW control is the Bonferroni method (Dunn, 1961). This procedure controls for 

multiplicity by dividing the overall probability of a Type I error αFW by the number of tests 

conducted. The resulting per-test alpha level is αT = α / T. For a summary of the discussed 

multiplicity control options and notation, see Table 1. The Bonferroni procedure is an example 

of a single-step/simultaneous multiple testing procedure since all comparisons are done 

simultaneously using the same αT.  

 Numerous alternatives to the Bonferroni procedure for controlling α’ at α have been 

proposed, with the Holm (1979) procedure a flexible and popular alternative. The Holm 

procedure makes inferences regarding statistical significance in a stepwise manner. The term 

stepwise, as opposed to single-step/simultaneous, implies that the significance tests take place 

in a prespecified order and αT can depend on the specific stage of testing. More specifically, for 

the Holm procedure the p-values are initially ordered from smallest to largest, and in the first 

step the smallest p-value is compared against α / T. If this test is not significant, then none of 

the null hypotheses can be rejected. If this test is significant, then the second smallest p-value is 

compared to α / (T – 1), again retaining all remaining null hypotheses if the test is not significant 

and moving on to the next stage of testing if the test is significant. Summarizing, at each stage 

the p-values are compared to α / (T-i), where i represents the number of previously rejected 

hypotheses; if the p-values associated with any hypotheses are not rejected then all the 

remaining null hypotheses (i.e., those associated with larger p-values) are also not rejected.  



Multiplicity Control     8 
 

 Lastly, a researcher could also control the expected proportion of the number of Type I 

errors out of all rejected null hypotheses, called the false discovery rate (αFDR; Benjamini & 

Hochberg, 1995; Keselman, Cribbie & Holland, 1999). The false discovery rate provides more 

liberal control of the Type I error rate than αFW, but does not completely ignore the multiplicity 

issue like αPT (Cribbie, 2003). Note that αFDR-based procedures are more powerful than αFW 

procedures, in general, because αFDR controls the rate of Type I errors over all rejected 

hypotheses, instead of all tested hypotheses. Although this is not an exhaustive list of error 

rates that can be controlled (also see Keselman, Cribbie & Holland, 2002 and Keselman, Miller, 

& Holland, 2011 for examples of alternative error rates), these three methods of controlling for 

Type I errors (αPT, αFW, αFDR) represent the most commonly adopted approaches.  

 Some very convincing arguments for αPT control have been provided by Carmer and 

Walker (1985), Rothman (1990), Saville (1990; 2003), and others. The primary message of these 

articles is that conducting T tests of significance within one study has the same goals as 

conducting T studies each with a single test of significance. In other words, in the pairwise 

multiple comparison problem above, conducting all T = 6 pairwise comparisons in one study is 

strategically no different than conducting six studies each with T = 1 pairwise comparisons so 

why should there be a penalty for conducting all the tests together? Saville takes this argument 

further and asserts that consistency across studies is important; whether a researcher conducts 

one test in a study (and therefore does not have to control for multiplicity) or several tests in a 

study, the number of tests conducted should not affect the conclusion for each individual test. 

Essentially, the argument is that we should not penalize a researcher for conducting more 

extensive research. αFW and αFDR procedures are considered inconsistent tests since the α 
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probability for each test depends on how many other related tests are being conducted. 

Another argument that has been put forth in support of αPT is that αFW and αFDR increase the 

probability of a Type II error (e.g., Nakagawa, 2004; Rothman). However, an increased 

probability of Type II errors should never be used as an argument for adopting αPT control. 

Decisions regarding multiplicity control should always be made a priori and therefore the study 

should be powered for the adjusted α level. This point was made clear by Kruschke (2010), who 

explains how the intentions of the researcher can impact p-values, multiple comparisons, etc. 

As outlined above, different multiple testing procedures lead to different ‘levels’ of control; if 

decisions are made a priori, any decisions made after the data is available would need to be 

treated with skepticism.   

 However, the arguments in support of αPT have had trouble standing up to the position 

that conducting multiple tests in a study raises the overall probability of a Type I error, α’ (Bland 

& Altman, 1995; Hancock & Klockars, 1996; Ryan, 1959, 1962; Tyler, Normand, & Horton, 2011). 

For example, Holland, Basu and Sun (2010) highlighted that false alarms related to the health 

concerns of Bisphenol A (BPA, in baby bottles), polyvinylchloride (PVC, in toys), and silicone (in 

breast implants) were caused by researchers ignoring multiplicity. 

 According to Westfall and Young (1993), if any of the following statements are true then 

a researcher should be concerned about inflated Type I error rates: 1) It is plausible that some 

effects might be null; 2) You are prepared to perform many tests of significance in order to find 

a significant result; 3) Your analysis is exploratory, yet you still want to be confident that a 

significant result is ‘real’; 4) Replication of the experiment is unlikely; 5) There is a “cost” 

associated with a Type I error; or 6) You want to ensure that the overall rate of Type I error is 
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held at α. These guidelines cover almost any multiple testing situation imaginable and provide a 

stark contrast to the arguments of supporters of αPT.  

 Arguments in favor of αFDR center around the need for a compromise between strict αFW 

and liberal αPT control, and are especially appealing when the number of hypotheses to be 

tested becomes very large (e.g., fMRI evaluations where thousands of tests are simultaneously 

conducted on different voxels within the brain). Cribbie (2003) demonstrated that, in many 

popular multiple testing situations, αFDR provides an excellent balance between Type I error 

control and power (i.e., minimizing the combined probability of Type I and Type II errors). 

Multiplicity Control with Multiple Outcomes 

 Few studies in psychology have only a single outcome variable (Lix & Sajobi, 2010; Tyler 

et al., 2011), and of the majority of studies that have multiple outcome variables, most do 

nothing to address the multiplicity issue (Vickerstaff, Ambler, King, Nazareth, & Omar, 2015). 

Wason, Stecher and Mander (2014), Vickerstaff et al., and others have posited that αFW control 

is necessary when multiple outcomes are analyzed, and Vickerstaff et al. found that if αFW 

control had been adopted in studies that used no control that the conclusions of many of them 

would be overturned.  

 Numerous studies have been conducted that discuss solutions for dealing with multiple 

outcome variables, exploring a wide variety of options. For example, one could select a single 

primary outcome, create a composite variable (e.g., sum together the scores), explore an 

overall treatment effect (e.g., combining the treatment effect across multiple standardized 

variables), or conduct a multivariate test (Bender & Lange, 2001; Logan & Tamhane, 2004; 

Wilkinson et al., 1999). Each of these solutions has in common the goal of reducing the testing 
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problem from multiple tests to a single test, with the multivariate solution the most popular in 

the literature. If researchers are interested in the multivariate effect and are not interested in 

the univariate effects of each outcome variable, then multivariate tests are recommended and 

valuable. However, it is rare that a linear combination of outcome variables is of interest 

(Huberty & Morris, 1989), and therefore multivariate tests are rarely conducted in practice 

(Counsell & Harlow, 2016; Vickerstaff et al., 2015). Vickerstaff et al. reported that only two out 

of sixty trials with multiple primary outcomes used a MANOVA. When they do use a 

multivariate analysis, they almost always follow-up the test with separate univariate analyses of 

each outcome (Huberty & Morris; Vickerstaff et al.).  

 Huberty and Morris reviewed current practice and also explained why the use of a 

preliminary MANOVA before conducting univariate ANOVAs is not only unnecessary from the 

standpoint of multiplicity control, but also irrelevant for addressing the dominant research 

question that relates to the specific treatment effect for each outcome. They reviewed several 

psychology journals and found that, of researchers who used a MANOVA, only 3 out of 81 

conducted a MANOVA without follow-up univariate ANOVAs. Thus, multivariate tests rarely 

match the theoretical goals of researchers and do little to minimize the effects of multiplicity 

since univariate tests are a regular follow-up procedure. As Huberty & Morris summarized, “in 

none of the 222 multiple outcome variable studies was there much interest expressed in any 

structure associated with the MANOVA results” (p. 302). Lastly, Huberty and Morris, Bird & 

Hadzi-Pavlovic (2014), and others have shown that using a MANOVA as preliminary test 

provides only illusory protection of the familywise error rate is 
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 Another solution is to use αFW control (e.g., Bonferroni-type procedures). Although Tyler 

et al. (2011) found that most researchers did not adjust for multiplicity with multiple outcomes, 

if they did they used Bonferroni-type procedures. This same finding was reported by Baron, 

Perrodeau, Boutron, and Ravaud (2013), who found that the original Bonferroni procedure was 

the most popular adjustment for multiplicity in multi-arm clinical trials.  

 The original Bonferroni procedure becomes extremely conservative as the number of 

outcome variables increases, however stepwise modified Bonferroni procedures (e.g., Holm), as 

discussed previously, provide substantially greater power, good αFW control, and are flexible 

enough to use in almost any situation (Blakesley et al., 2009). Researchers have explored 

improvements to the Holm and other stepwise procedures, however rarely are the 

improvements substantial. For example, Lix and Sajobi (2010) and Troendle (1995) explored 

resampling-based stepwise procedures that control for the correlations among the outcome 

variables, however the gains in power were minimal over the original stepwise procedures. 

 Another option is to weight some outcome variables more highly than others. Alosh, 

Bretz, and Huque (2011) and Wang et al. (2009) discuss methods based on hierarchically 

organized hypotheses. In the fixed sequence strategy, all hypotheses are tested at level α but 

lower order hypotheses are only tested if higher order hypotheses are statistically significant. 

With fallback procedures, the total α is divided among the hypotheses and rejecting the null 

hypothesis associated with higher order hypotheses is not required for testing lower order 

hypotheses. However, if a hypothesis is rejected, all of its weight (α) is carried to the next 

hypothesis in the sequence. See Alosh et al. and Wang et al. for more details on hierarchical 

options. Although these procedures provide a better way to spend the allotted α probability 
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with hierarchically ordered hypotheses, in how many instances are researchers able to weight 

the importance of their outcome variables? Even more importantly, should the α-level for a 

given hypothesis depend on how important that outcome variable is relative to other outcome 

variables?  

 To conclude, although numerous options are available if αFW (or αFDR) control are 

desired, stepwise Bonferroni-type procedures (e.g., Holm) are recommended for their Type I 

error control, power, simplicity and availability in popular software packages (Blakesley et al., 

2009). As Dmitrienko and D’Agostino (2013) concluded, unless researchers have an interest in 

specifying quite different weights to hypotheses, traditional stepwise Bonferroni-type 

procedures generally perform as well or better than more complicated alternative procedures. 

Multiple Regression 

 Multiple regression is one of the most common forms of analysis conducted in 

psychology. Two or more variables are used to predict scores on a single outcome variable, and 

the multiplicity issue arises because researchers are typically interested in the unique 

contribution of each included predictor. In other words, the statistical significance of each 

predictor is often of interest and therefore multiple null hypothesis tests are conducted. It is 

important to point out that if the model is simply used for prediction that no multiplicity issues 

arise. More specifically, if the full model is used to predict the outcome, without null hypothesis 

tests for determining which predictors are statistically significant or should be retained in the 

model, then there are no Type I errors.  

 Although researchers are generally aware of the inflation in the overall α' with stepwise 

regression, prescreening of predictors, etc. (Freedman, 1983), it is still rare for researchers to 
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adopt any form of multiplicity control when assessing the statistical significance of multiple 

predictors in regression. Larzelere and Mulaik (1977) pointed out about 40 years ago that when 

assessing the statistical significance of multiple correlations that some sort of multiplicity 

control is necessary to control for an inflated risk of Type I errors. Cribbie (2000) pointed out 

the same result when multiple hypotheses are evaluated in structural equation models. The 

same basic issues apply to multiple regression; if you evaluate the statistical significance of 

multiple predictors without any form of multiplicity control then α' will be greater than α (with 

smaller correlations among the predictors resulting in a greater difference between α and α').  

 As expected, the same solutions proposed for multiple outcomes are applicable for 

multiple predictors in regression. Stepwise Bonferroni procedures (e.g., Holm) are 

straightforward, effective at controlling αFW = α, available in most statistical software packages 

and little is gained by adopting more complex versions of these tests (e.g., Troendle, 1995). 

However, if αFDR control is preferred or different weights are applied to each predictor, then the 

procedures described in the sections above may provide better results. Smith and Cribbie 

(2013) also proposed a strategy for controlling for the dependencies among the null hypothesis 

tests. This approach was proposed within the field of structural equation modeling, however 

the same procedure is applicable in multiple regression. Essentially, since more highly 

correlated test statistics lead to less of an inflation of α', Smith and Cribbie proposed that the 

Bonferroni-type adjustments be weighted by the correlations among the parameters. In the 

case of multiple regression, this would involve controlling for the correlations among the 

coefficients for the predictors. Highly correlated parameter estimates would not require the 

same degree of control as weakly correlated parameter estimates due to the larger amount of 
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information overlap (recall that αFW, or α’ in general, are largest with independent test statistics 

and no Type I error inflation is observed when the tests are perfectly correlated). 

Stop the Bus: The Multiplicity Control and School Uniform Debates are Not Over Yet 

 Until now, the debate seems pretty one sided. Most of the psychology literature and the 

discussion above have revolved around how to control αFW. In short, recommendations to date 

center on the premise that if you want to test multiple hypotheses then you better do 

something to ensure that there is not a high risk that some tests will be significant by chance 

alone. However, the marriage of some old ideas about multiplicity control (e.g., Rothman, 1990; 

Saville, 1990), with a new perspective on the role of null hypothesis testing (e.g., Cumming, 

2014), has significantly altered the debate regarding multiplicity control in psychology.  

 Let’s start with revisiting the ideas of Saville (1990, 2003) and Rothman (1990). Saville 

(1990) notes that the number of Type I errors one makes depends on how many of the tested 

null hypotheses are true. Since very few (if any) effects are ever null (i.e., very few null 

hypotheses are ever true), there is little concern about the effects of multiplicity (Gelman, Hill, 

& Yajima, 2012). Rothman (1990) agrees, commenting that the value of adjustments for 

multiple testing are seen mostly in simulation studies where random numbers are generated 

and therefore all null hypotheses are true. Put another way, we assume that the universe is 

governed by natural laws and relationships, and therefore using the null hypothesis as a 

starting point is “in effect, to suspend belief in the real world and thereby to question the 

premises of empiricism” (Rothman, p. 44). To summarize, if the null is never true then there is 

no such thing as a Type I error and hence controlling for an inflation of the Type I error rate is 

unnecessary. 
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 A second point raised by Saville (1990) is that the relationship being investigated is the 

natural unit of analysis, not the family of hypotheses, or the experiment, or the set of 

experiments, or all hypotheses tested under a research grant, or all hypotheses tested in a 

researcher’s career, or all hypotheses tested in a discipline, etc. This is highly related to the idea 

of consistency discussed earlier; the criteria for evaluating one relationship should not depend 

on how many other relationships are investigated.  

 The next point raised by Saville (1990) liaises nicely with modern thinking (e.g., 

Cumming, 2014; Gelman et al., 2012). In most research situations, the focus should be on 

estimation (i.e., precise estimates of parameters), not statistical significance. When the focus is 

on estimation, rather than statistical significance, multiplicity has no effect on the results or 

conclusions. In short, null hypothesis tests provide only a small piece of information regarding 

an association; the bulk of the information comes from model parameters, effect sizes, 

replication, confidence intervals, meta-analyses, and the like (Cumming; Gelman et al.). The 

transformation in psychology from a reliance on null hypothesis tests to a distaste for null 

hypothesis tests, at least in the past few years, has been quick and impactful (Cumming & Calin-

Jageman, 2017; Trafimow & Marks, 2015). The quick turnaround in thinking even prompted the 

American Statistical Association to release a statement on null hypothesis significance testing 

(Wasserstein & Lazar, 2016), where the authors explain what p-values can and cannot tell you 

about your results. 

 Imagine that we are exploring the difference between males and females on depression, 

mathematical ability, and perfectionism. In most situations, our primary focus should be on all 

facets of the difference between males and females on each outcome variable, what Tukey 
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(1977) called exploratory data analysis, not only on the statistical significance of each of these 

comparisons or controlling for how many tests we are conducting. This sort of analysis includes 

mean differences, median differences, differences in variability, distributional shape 

differences, differences in outliers, posterior distributions, etc. This would also include ensuring 

precise estimation of the differences via large sample sizes, valid and reliable instruments, 

proper models, and encouraging replications of the findings. For example, Gelman et al. (2012) 

make it clear that by adopting more sophisticated models (e.g., multilevel models with Bayesian 

estimates) we can obtain more robust estimates of the parameters. At the same time, as Cohen 

(in press) highlights, it is important to acknowledge that different areas of research have 

different goals, and the focus of research in one area, say effect sizes, might be quite different 

from the focus in another area, e.g., direction of effects. In general though, it is important to 

think of each relationship as the natural unit of analysis and to focus all available energy on 

finding out the most about that relationship as possible.  

 Can null hypothesis testing be a part of this process? Currently, that is a much debated 

point, with some completely opposed to p-values and null hypothesis testing (e.g., Trafimow & 

Marks, 2015; Cumming, 2014), while others are more tolerant and recognize the value of the 

information provided by the p-value and its interpretation (Wasserstein & Lazar, 2016). There is 

little debate that the focus of most current research in psychology is still typically hypothesis 

testing, however methodological discussions at conferences, in blogs and papers, etc. seem to 

indicate that more radical changes to practice are near. Obviously this observation is subjective, 

however in addition to the published articles supporting this contention referred to above, 

there are also some quantitative indicators that discussions surrounding null hypothesis testing 
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are spiking. For example, a ‘Google Scholar’ search for the words “null”, “hypothesis” and 

“testing” in the title of articles returned 16 hits for articles published in 2005/2006, 27 hits for 

articles published in 2010/2011, and 49 hits for articles published in 2015/2016.  

 If null hypothesis testing becomes only a minor part of the research process, then 

should multiplicity control be necessary? There is no debating that α' will rise as the number of 

tests increases, but is that an issue when our focus is on precisely estimating the nature of the 

relationship? We also cannot forget the convincing arguments of Saville (1990) and Rothman 

(1990) for not invoking multiplicity control at all. 

Conclusion 

 Some debates continue for years with no sign of resolve, including school uniforms, free 

will, nature/nurture, and whether the chicken or the egg came first. The debate over school 

uniforms has continued for decades. For example, proponents see a valuable way to minimize 

arguments/bullying over fashion/style, while opponents see the loss of a child’s sense of 

individuality. Interestingly, proponents of both sides argue that costs are lower with their 

preference. Is the multiplicity debate as unwinnable as the school uniform debate? For many 

years the prevailing sentiment has been that it is important to control for multiplicity when 

conducting multiple null hypothesis tests, and this sentiment has not only applied to multiple 

comparisons in an ANOVA setting but also to regression, multiple outcome variables, structural 

equation modeling, voxel evaluations in functional magnetic resonance imaging, etc.  

 However, the recent abrupt shift in focus from null hypothesis testing to precise 

estimation of relationships (at least, for now, in the methodological literature) has definitely 

made the debate more perplexing (and interesting). The role of multiplicity control in 
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psychology will depend to a large extent on the role that null hypothesis testing and 

dichotomous thinking play in psychology. Currently, null hypothesis testing still dominates 

published research and instruction in psychology and if that continues researchers need to be 

aware of and use the techniques described earlier in the paper because they will likely be 

required by book/journal editors, reviewers, etc. Editors and reviewers list conducting multiple 

tests without adjustment as one of the most popular statistical errors in submitted manuscripts 

(Harris, Reeder, & Hyun, 2011). On the other hand, if, as expected, null hypothesis testing 

eventually takes on a very minor role in the evaluation of relationships, then discussions 

surrounding multiplicity control may all but disappear. Precisely estimating relationships avoids 

dichotomous thinking and errors of statistical inference (Type I/II), and thus multiplicity control 

is unnecessary.  

 Here is a brief summary regarding recommendations for evaluating multiple 

relationships, be that multiple comparisons of means, multiple outcomes, multiple predictors in 

regression, etc.: 

 

1) If the statistical analyses rely heavily on null hypothesis significance testing (and it should be 

clear from the discussion above that this strategy is generally not recommended), then the 

nature/goals of the research might drive the decision regarding multiplicity control. However, 

policies of the publication outlet for the research might also come into play; although 

researchers might agree with proponents of αPT control, currently most editors and reviewers 

require αFW (or in some cases αFDR) control in order to minimize the probability of Type I errors. 

If αFW (or αFDR) multiplicity control is necessary, stepwise Bonferroni-type procedures (e.g., 
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Holm) are recommended for their simplicity, balance of Type I error control and power, and 

availability in popular software packages such as R, SAS and STATA. 

 

2) If the statistical analyses prioritize estimation over null hypothesis significance testing, the 

recommended approach in most research settings, then multiplicity control is unnecessary 

since hypothesis testing (and hence Type I errors) are a minor part of the analysis strategy. 

 

 Like a parent waiting on a decision regarding school uniforms, the field of psychology is 

currently waiting to see what position editors, textbook authors, governing bodies, etc. take 

regarding null hypothesis significance testing and, consequently, multiplicity control. However, 

Gigerenzer (2004), regarding ritualistic null hypothesis testing, recommends a more active 

approach that definitely applies here: “We need some pounds of courage to cease playing along 

in this embarrassing game. This may cause friction with editors and colleagues, but it will in the 

end help them to enter the dawn of statistical thinking” (p. 604). Current sentiments point 

towards p-values and null hypothesis testing taking on a very minor role in quantitative 

methods for psychology, but for now the debate rages on and the decisions, approaches and 

rationales of individual researchers may determine the future path of multiple testing analyses 

in psychology.  

  



Multiplicity Control     21 
 

References 

Alosh, M., Bretz, F. & Huque, M. (2014). Advanced multiplicity adjustment methods in 

  clinical trials. Statistics in Medicine, 33, 693–713. DOI:10.1002/sim.5974. 

Bargh, J. A., Chen, M., & Burrows, L. (1996). Automaticity of social behavior: Direct effects of 

 trait construct and stereotype activation on action. Journal of Personality and Social 

 Psychology, 71, 230-244. DOI: http://dx.doi.org/10.1037/0022-3514.71.2.230. 

Baron, G., Perrodeau, E., Boutron, I., & Ravaud, P. (2013). Reporting of analyses from 

 randomized controlled trials with multiple arms: A systematic review. BMC medicine, 11, 

 1. DOI: 10.1186/1741-7015-11-84. 

Bender, R. & Lange, S.  (2001). Adjusting for multiple testing—when and how? Journal of Clinical 

 Epidemiology, 54, 343-349. DOI: http://dx.doi.org/10.1016/S0895-4356(00)00314-0. 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and 

Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B, 

57, 289-300. DOI: http://www.jstor.org/stable/2346101. 

Blakesley, R. E., Mazumdar, S., Amanda Dew, M., Houck, P. R., Tang, G., Reynolds III, C. F., 

 Butters, M. A. ( 2009). Comparisons of methods for multiple hypothesis testing in 

 neuropsychological research. Neuropsychology, 23, 255-264. DOI: 10.1037/a0012850. 

Bland, J. M. & Altman, D. G. (1995). Multiple significance tests: The Bonferroni method. British 

 Medical Journal, 310, 170. DOI: http://dx.doi.org/10.1136/bmj.310.6973.170. 

Cohen, B. (in press). Why the resistance to statistical innovations? A Comment on Sharpe 

 (2013). Psychological Methods. DOI: 10.1037/met0000058. 



Multiplicity Control     22 
 

Counsell, A. & Harlow, L. L. (in press). Reporting practices and use of quantitative methods in 

 Canadian journal articles in psychology. Canadian Psychology. 

 http://dx.doi.org/10.1037/cap0000074 

Cribbie, R. A. (2000). Evaluating the importance of individual parameters in structural equation 

modeling: The need for Type I error control. Personality and Individual Differences, 29, 

567-577. DOI: http://dx.doi.org/10.1016/S0191-8869(99)00219-6. 

Cribbie, R. A. (2003). Pairwise multiple comparisons: New yardstick, new results. Journal of 

Experimental Education, 71, 251-265. DOI: http://www.jstor.org/stable/20152711. 

Cumming, G. (2014). The new statistics: Why and how. Psychological Science, 25, 7-29. DOI: 

 10.1177/0956797613504966.  

Cumming, G., & Calin-Jageman, R. (2017). Introduction to the new statistics: Estimation, open 

 science, and beyond. New York: Routledge. 

Dmitrienko, A. & D’Agostino, R. (2013). Traditional multiplicity adjustment methods in clinical 

trials. Statistics in Medicine, 32, 5172-5218. DOI: 10.1002/sim.5990. 

Dunn, O. J. (1961). Multiple comparisons among means. Journal of the American Statistical 

Association, 56, 52–64. DOI: 10.1080/01621459.1961.10482090. 

Freedman,  D. A. (1983). A note on screening regression equations. The American Statistician, 

37, 152-155. DOI:10.1080/00031305.1983.10482729. 

Gelman, A., Hill, J., & Yajima, M. (2012). Why we (usually) don’t have to worry 



Multiplicity Control     23 
 

 about multiple comparisons. Journal of Research on Educational Effectiveness, 5, 189–

211. DOI: 10.1080/19345747.2011.618213. 

Gigerenzer, G. (2004). Mindless statistics. The Journal of Socio-Economics, 33, 587-606. 

Hancock, G. R., & Klockars, A. J. (1996). The quest for α: Developments in multiple comparison 

 procedures in the quarter century since Games (1971). Review of Educational Research, 

 66, 269-306. DOI: 10.3102/00346543066003269. 

Harris, A., Reeder, R., & Hyun, J. (2011). Survey of editors and reviewers of high-impact 

 psychology journals: Statistical and research design problems in submitted manuscripts. 

 The Journal of Psychology: Interdisciplinary and Applied, 145, 195-209. 

 DOI:10.1080/00223980.2011.555431. 

Holland, B., Basu, S. & Sun, F. (2010). Neglect of multiplicity when testing families of related hypotheses. 

  Working paper, Temple University. 

Holland, B., & Cheung, S. H. (2002). Familywise robustness criteria for multiple-comparison procedures. 

  Journal of Royal Statistical Society B, 64, 63-77.  

Holm, S. (1979). A Simple sequentially rejective multiple test procedure. Scandinavian Journal 

  of Statistics, 6, 65-70. DOI: http://www.jstor.org/stable/4615733. 

Huberty, C. J., & Morris, J. D. (1989). Multivariate analysis versus multiple univariate analyses. 

 Psychological Bulletin, 105, 302-308. DOI: http://dx.doi.org/10.1037/0033-

 2909.105.2.302. 

Keselman, H. J., Cribbie, R., & Holland, B. (1999). The pairwise multiple comparison multiplicity 

 problem: An alternative approach to familywise/comparisonwise Type I error control. 

 Psychological Methods, 4, 58-69. DOI: 10.1037/1082-989X.4.1.58. 



Multiplicity Control     24 
 

Keselman, H. J., Cribbie, R. A. & Holland, B. (2002). Controlling the rate of Type I error over a 

large set of statistical tests. British Journal of Mathematical and Statistical Psychology, 

55, 27-39. DOI: 10.1348/000711002159680. 

Keselman, H. J., Miller, C. W., & Holland, B. (2011). Many tests of significance: 

 New methods for controlling Type I errors. Psychological Methods, 16, 420-31. DOI: 

 10.1037/a0025810.  

Kruschke, J. K. (2010). Bayesian data analysis. Wiley Interdisciplinary Reviews: Cognitive 

 Science, 1, 658-676. http://dx.doi.org/10.1002/wcs.72. 

Larzelere, R. E., & Mulaik, S. A. (1977). Single sample tests for many correlations. Psychological 

 Bulletin, 84, 557-569. DOI: http://dx.doi.org/10.1037/0033-2909.84.3.557. 

Lix, L. M. & Sabjobi, T. (2010). Testing multiple outcomes in repeated measures designs. 

 Psychological Methods, 15, 268–280. DOI: 10.1037/a0017737. 

Logan, B. R., & Tamhane, A. C. (2004). On O’Brien’s OLS and GLS tests for multiple endpoints. 

 Lecture Notes-Monograph Series, Recent Developments in Multiple Comparison 

 Procedures, 47, 76-88. DOI: 10.1214/lnms/1196285627. 

Maltenfort, M. (Jan. 7, 2013). Bonferroni correction for multiple regression models? - 

 ResearchGate. Available from: 

 https://www.researchgate.net/post/Bonferroni_correction_for_multiple_regression_m

 odels [accessed Jul 13, 2016]. 

Marcus, R., Peritz, E., & Gabriel, K. R. (1976). On closed testing procedures with special 

 reference to ordered analysis of variance. Biometrika, 63, 655–660. DOI: 

 10.1093/biomet/63.3.655. 

http://dx.doi.org/10.1037/0033-2909.84.3.557


Multiplicity Control     25 
 

Nakagawa, S. (2004). A farewell to Bonferroni: the problems of low statistical power and 

publication bias. Behavioral Ecology, 15, 1044-1045. DOI: 

https://doi.org/10.1093/beheco/arh107. 

Rothman,  

Ryan, T. A. (1959). Multiple comparisons in psychological research. 

Psychological Bulletin, 56, 26-47. DOI: http://dx.doi.org/10.1037/h0042478. 

Ryan, T. A. (1962). The experiment as the unit for computing rates of error. 

Psychological Bulletin, 59, 301-305. DOI: http://dx.doi.org/10.1037/h0040562. 

Saville, D. J. (1990). Multiple comparison procedures: The practical solution. The American Statistician, 

  44, 174- 180. DOI: 10.2307/2684163. 

Saville, D. J. (2003). Basic statistics and the inconsistency of multiple comparison procedures. 

Canadian Journal of Experimental Psychology, 57, 167-175. 

http://dx.doi.org/10.1037/h0087423. 

Smith, C., & Cribbie, R. A. (2013). Significance testing in structural equation modeling: 

Incorporating parameter dependencies into multiplicity controlling procedures. 

Structural Equation Modeling: An Interdisciplinary Journal, 20, 79-85. DOI: 

DOI:10.1080/10705511.2013.742385. 

Trafimow, D., & Marks, M. (2015). Editorial. Basic and Applied Social Psychology, 37, 1-2, DOI: 

10.1080/01973533.2015.1012991. 

Troendle, J. F. (1995). A stepwise resampling method of multiple hypothesis testing. Journal of 

the American Statistical Association, 90, 370-378. DOI: 

10.1080/01621459.1995.10476522. 

https://doi.org/10.1093/beheco/arh107


Multiplicity Control     26 
 

Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley. 

Tyler, K. M., Normand, S. T., & Horton, N. J.  (2011). The use and abuse of multiple outcomes in 

 randomized controlled depression trials. Contemporary Clinical Trials, 32, 299-304. 

 DOI: 10.1016/j.cct.2010.12.007. 

Vickerstaff, V., Ambler, G., King, M., Nazareth, I., & Omar, R. Z. (2015). Are multiple primary 

 outcomes analysed appropriately in randomized controlled trials? A review. 

 Contemporary Clinical Trials, 45, 8–12. DOI: 10.1016/j.cct.2015.07.016. 

Wang, D., Li, Y., Wang, X., Liu, X, Fu, B., Lin, Y., Larsen, L., & Offen, W. (2009). Overview of 

 multiple testing methodology and recent development in clinical trials. Contemporary 

 Clinical Trials, 45, 13-20. DOI: http://dx.doi.org/10.1016/j.cct.2015.07.014. 

Wason, J. M. S., Stecher, L., & Mander, A. P. (2014). Correcting for multiple-testing in multi-arm 

 trials: Is it necessary and is it done? Trials, 15, 1-7. DOI: 10.1186/1745-6215-15-364. 

Wasserstein, R. L., & Lazar, N. A. (2016). The ASA's Statement on p-Values: Context, process, 

 and purpose. The American Statistician, 70, 129-133. DOI: 

 10.1080/00031305.2016.1154108. 

Westfall, P.H. & Young, S.S. (1993). Resampling-based multiple testing: Examples and methods for p- 

value adjustment. New York: Wiley. 

Wilkinson, L. & The Task Force on Statistical Inference (1999). Statistical methods in psychology 

 journals: Guidelines and explanations. American Psychologist, 54, 594-604. DOI: 

 http://dx.doi.org/10.1037/0003-066X.54.8.594. 

  



Multiplicity Control     27 
 

Table 1. 

Summary of the notation regarding per-test and familywise multiplicity control. 

 

Type of Multiplicity 

Control 

Proposed Overall  

Type I Error Rate (α’)  

Type I Error Rate for  

Each Test (αT) 

Per-Test (αPT) α’ ≤ 1 – (1 – αT)T αT = α 

Familywise (αFW) α’ = α αT ≤ α (depends on procedure) 

e.g., Bonferroni αT = α / T   

Note: α = maximum permissible Type I error rate; αPT = per-test α level; αFW = familywise Type I 

error rate; T = number of statistical tests. 

 


