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Abstract 

Equivalence tests are an alternative to traditional difference-based tests for demonstrating 

a lack of association between two variables. While there are several recent studies investigating 

equivalence tests for comparing means, little research has been conducted on equivalence 

methods for evaluating the equivalence or similarity of two correlation coefficients or two 

regression coefficients. The current project proposed novel tests for evaluating the equivalence 

of two regression or correlation coefficients derived from the two-one sided tests method (TOST; 

Schuirmann, 1987) and an equivalence test by Anderson and Hauck (AH; 1983). A simulation 

study was used to evaluate the performance of these tests and compare them with the common, 

yet inappropriate, method of assessing equivalence using non-rejection of the null hypothesis in 

difference-based tests. Results demonstrate that equivalence tests have more accurate 

probabilities of declaring equivalence in comparison to difference-based tests. However, 

equivalence tests require large sample sizes to ensure adequate power. We recommend the AH 

equivalence test over the TOST for comparing correlation or regression coefficients. 
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1. Introduction  

Researchers are often interested in comparing population correlation (ρs) or regression 

coefficients (βs), and in many cases the interest is in demonstrating that the coefficients are 

equivalent. For example, Pillemer, Thomsen, Kuwabara, and Ivcevic (2013) examined memories 

about the self and whether these memories focused on achievement or interpersonal themes in 

participants from Denmark and the United States. One of their hypotheses was that “relationships 

between emotional valence and thematic content should be consistent across cultures” (Pillemer 

et al., 2013, p. 213). Clogg, Petkova, and Haritou (1995) describe comparing regression 

coefficients as the most common method in social science research for comparing two 

explanations of a particular predictor variable. In some instances, researchers would like to 

demonstrate that one model is better than another or simply that the models are different from 

one another. In other cases, researchers would like to conclude equivalence between the 

regression slopes of the two groups. Paternoster, Brame, Mazerolle, and Piquero (1998) give an 

example where researchers would like to determine whether there is a similar treatment effect 

from a correctional program for first time offenders compared to repeat offenders. They discuss 

this relationship within the context of traditional difference-based null hypothesis significance 

testing (NHST) but present research questions consistent with determining equivalence (e.g., 

does β1=β2?). These examples highlight research comparing independent groups’ correlation or 

regression coefficients. Other research involves comparing correlation coefficients that are not 

independent. For example, a researcher may seek to validate a novel depression scale by 

demonstrating that the correlation between the depression scale and a measure of anxiety is 

equivalent to the correlation of a previously validated depression scale with the same measure of 
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anxiety (i.e., ρ12 = ρ13). 

2. Current Equivalence Testing Approaches 

An issue in psychology is that behavioural researchers do not have access to methods in 

statistical software that evaluate whether correlation or regression coefficients are equivalent. In 

the examples given above, there were no readily available equivalence tests for the researchers to 

use in order to appropriately demonstrate equivalence between groups. Their strategy (and the 

most prevalent method in psychology) was to test for equivalence using traditional difference-

based NHST, whereby a non-significant test statistic is deemed an indicator of equivalence. This 

approach is flawed for two main reasons. The first issue is theoretical; the purpose of difference-

based tests is to detect a difference or relationship, not lack thereof. To quote the title of Altman 

and Bland’s (1995) paper, “absence of evidence is not evidence of absence.” In other words, 

accepting the null hypothesis is inappropriate for establishing equivalence because researchers 

can never statistically determine that the null hypothesis is true. The second issue is of practical 

concern for researchers. Using difference-based tests with a null hypothesis of no difference has 

undesirable statistical properties if one’s goal is equivalence. Non-rejection of the traditional null 

hypothesis (e.g., no difference) would essentially guarantee equivalence with small sample sizes 

because of low power to find differences. On the other hand, it would be difficult to conclude 

equivalence with large sample sizes since the null hypothesis would almost always be rejected 

due to high power to detect differences. As such, statistically non-significant results could be a 

function of insufficient sample size or poor research design. It is our opinion that researchers are 

unintentionally using an incorrect analysis because appropriate methods have not yet been 

developed, or the procedures have not been popularized in psychology. Below we discuss 

available equivalence testing methods before introducing methods for comparing correlation or 
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regression coefficients.  

3. Equivalence Testing 

Equivalence tests have been developed and tested over the past several decades in 

pharmacokinetics, where researchers often want to determine whether the effects of two drugs 

are equivalent. Numerous methods are available, although some are more widely used than 

others (e.g., Anderson & Hauck, 1983; Brown, Hwang, & Munk, 1997; Ennis & Ennis, 2009; 

Hsu, Hwang, Liu, & Ruberg 1994; Schuirmann, 1987; Westlake, 1972; 1976).The first mention 

of equivalence testing for psychology was by Rogers, Howard, and Vessey (1993), who 

discussed the methods outlined by Schuirmann (1987) and Westlake (1972; 1976). Their paper 

highlighted how and why psychology should adopt the equivalence-based methods used in other 

disciplines. Since Rogers and colleagues’ (1993) paper, numerous researchers have discussed the 

utility of equivalence testing for psychological research (e.g., Cribbie, Gruman, & Arpin-Cribbie, 

2004; Kendall, Marrs-Garcia, Nath, & Sheldrick, 1999; Quertemont, 2011; Seaman & Serlin, 

1998). Specifically, equivalence tests may be used to answer primary research questions in 

psychology, but also provide statistical analyses to justify other research or statistical decisions. 

For example, an equivalence test can justify pooling together groups or establish that two groups 

are equal at baseline before a treatment takes place (Rogers et al., 1993). Equivalence testing 

could be also used in validation research. To test for discriminant validity, one could use an 

equivalence test for a lack of association (e.g., Goertzen & Cribbie, 2010) to demonstrate that a 

scale is not correlated with another scale measuring an unrelated construct. Equivalence tests 

also have applications for procedures such as meta-analysis, where data from studies rather than 

groups are pooled according to a similar criterion. 

In equivalence testing, equivalence is not defined as a strict difference of zero, because 
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with sampling error, it is difficult to find mathematical equivalence even if the true difference 

between population parameters is zero. Equivalence implies that the parameters are similar 

enough that there is no practical consequence to assuming that they are equal. To determine 

whether the parameters are equivalent, the researcher must choose an interval such that a 

parameter difference within their chosen interval can be considered inconsequential. This 

interval is called the equivalence interval (-δ, δ), where δ represents the distance from zero to the 

edge of the interval in either direction. Choosing an appropriate equivalence interval will be 

elaborated in the discussion section. Following the framework of NHST, equivalence tests 

employ null and alternative hypotheses. However, the null hypothesis is, for example, that there 

is a non-trivial difference between the population means; i.e., the difference lies outside of the 

pre-specified equivalence interval. The alternative hypothesis is that the difference in the means 

falls within the equivalence interval. To tie these ideas into the primary purpose of the current 

paper, equivalence of regression and correlation coefficients involves demonstrating that the 

difference between the coefficients is so small that any differences can be considered trivial. 

4. Equivalence Tests Comparing Regression Coefficients 

We propose two equivalence tests for comparing independent regression coefficients. 

The first (TOST-β) is an equivalence-based version of the t-test of independent regression 

coefficients, based on the popular two one-sided tests (TOST) originally developed to evaluate 

the equivalence of two group means (Schuirmann, 1987; Westlake, 1972).The first null 

hypothesis, H01: β1
− β

2
≤ −δ is rejected if: 𝑡1 ≥ 𝑡(1−𝛼,𝑁−4) and the second null hypothesis, H02: 

β
1

− β
2

≥ δ  is rejected if: 𝑡2 ≤ 𝑡(𝛼,𝑁−4) where: 

𝑡1 =  
𝑏1 − 𝑏2 − (−δ)

𝑠𝑏1−𝑏2
,                 𝑡2 =  

𝑏1 − 𝑏2 − δ

𝑠𝑏1−𝑏2
 

β is the population regression coefficient, b is the sample regression coefficient, and t is 
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distributed on N-4 degrees of freedom (df). The standard error can be calculated by: 

𝑠𝑏1−𝑏2 = √
𝑠𝑌∙𝑋1

2

𝑠𝑋1
2 (𝑛1 − 1)

+
𝑠𝑌∙𝑋2

2

𝑠𝑋2
2 (𝑛2 − 1)

 

where 𝑠𝑋1
2  and  𝑠𝑋2

2  are the variances of the independent variable for each group, and 𝑠𝑌∙𝑋1
2  and 

𝑠𝑌∙𝑋2
2  are the error variances for each group. Rejection of both H01 and H02 is necessary to 

conclude that the difference in regression coefficients is within the equivalence interval (i.e., 

– δ < β
1

− β
2

< δ). 

Our second equivalence test of regression coefficients (AH-β) is based on Anderson and 

Hauck’s (1983) equivalence test. Their procedure approximates a non-central t distribution to 

determine a p value for the test. This test has only one null hypothesis, H0: β1
− β

2
≤ −δ or β

1
−

β
2

≥ δ, which is rejected when p ≤ α where p is approximated by: 

𝑝 = Φ [
|𝑏1 − 𝑏2| − δ

𝑠𝑏1−𝑏2
] − Φ [

– |𝑏1 − 𝑏2| − δ

𝑠𝑏1−𝑏2
] 

Φ represents the standard normal probability function. If p ≤ α, the regression coefficients are 

considered equivalent. 

5. Comparing Correlation Coefficients 

5.1. Sampling distribution of the population correlation coefficient 

Research using correlation coefficients is affected by the sampling distribution of the 

population correlation parameter, ρ, because the distribution becomes increasingly skewed as ρ 

approaches ±1.00. With higher values of ρ, the sampling distribution will not be normal and the 

standard error cannot easily be estimated. This has important implications for comparing two 

independent correlation coefficients when running a t-test on the difference (Howell, 2009). 

Fisher (1921) demonstrated that by transforming r using the following formula): 
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𝑟′ = (0.5)𝑙𝑜𝑔𝑒 |
1 + 𝑟

1 − 𝑟
| 

𝑟′will become approximately normally distributed around ρ´ (the transformed ρ) with a standard 

error of 𝑠𝑟′ =  
1

√𝑁−3
 . After transforming r to 𝑟′, the issue of the skewed sampling distribution can 

be avoided by obtaining a standardized score of the difference between the independent rs. Since 

the value of δ is specified on a linear scale, δ′ must be calculated so that the interval is on the 

same scale as the transformed rs. Transforming the equivalence interval was not found to be 

effective because the slight deviations in the difference between 𝑟1
′ − 𝑟2

′  and δ′ created large 

discrepancies in the test statistic. Instead, δ was modified by the following statistic based on 

Fisher’s r to z transformation:  

δ
′ = |(0.5)𝑙𝑜𝑔𝑒 {

1 + (
𝑟1+𝑟2

2
−

δ

2
)

1 − (
𝑟1+𝑟2

2
−

δ

2
)

} − (0.5)𝑙𝑜𝑔𝑒 {
1 + (

𝑟1+𝑟2

2
+

δ

2
)

1 − (
𝑟1+𝑟2

2
+

δ

2
)

}| 

Given the complication of transforming r1 and r2, we examined a few versions of equivalence 

based t-tests comparing correlation coefficients. Our TOST-ρ used the transformation above, 

whereas the other two equivalence tests comparing correlations (KTOST-ρ, and AH- ρ) used a 

modified standard error instead (described in next section). 

5.2. Equivalence tests comparing independent correlation coefficients 

 The first proposed test for correlation coefficients applied the TOST to the t-test of 

transformed correlation coefficients (TOST-ρ). Similar to the TOST comparing regression 

coefficients, the two null hypotheses, H01: ρ1
− ρ

2
≤ −δ and H02: ρ1

− ρ
2

≥ δ are rejected when 

𝑧1 ≥ 𝑧1−𝛼 and 𝑧2 ≤ 𝑧𝛼 where 

𝑧1 =  
𝑟1

′ − 𝑟2
′ − (−δ′)

√
1

𝑛1−3
+ 

1

𝑛2−3

,      𝑧2 =  
𝑟1

′ − 𝑟2
′ − δ′

√
1

𝑛1−3
+ 

1

𝑛2−3
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Rejection of both null hypotheses implies that the correlation coefficients between the two 

groups are equivalent.  

The second test we examined (KTOST-ρ) was the untransformed TOST proposed by 

Kraatz (2007). The null and alternative hypotheses are the same as the transformed tests of 

independent ρs. However, she used the following standard error described by Olkin and Finn 

(1995): 

𝑠𝑟1−𝑟2
=  √

(1 − 𝑟1
2)2

(𝑛1 − 2)
+

(1 − 𝑟2
2)2

(𝑛2 − 2)
 

Her test statistics are then: 

𝑧1 =  
𝑟1 − 𝑟2 − (−δ)

𝑠𝑟1−𝑟2

,     𝑧2 =  
𝑟1 − 𝑟2 − δ

𝑠𝑟1−𝑟2

 

where the null hypotheses are rejected when 𝑧1 ≥ 𝑧1−𝛼and 𝑧2 ≤ 𝑧𝛼, and rejection of both null 

hypotheses implies that the correlation coefficients are equivalent between the two groups. 

The final equivalence test of independent correlation coefficients that we propose (AH-ρ) 

was based on Anderson and Hauck’s (1983) procedure. We used the same standard error as 

Kraatz (2007) and after applying the AH approximation, our proposed statistic was:  

𝑝 = Φ [
|𝑟1 − 𝑟2| − δ

𝑠𝑟1−𝑟2

] − Φ [
– |𝑟1 − 𝑟2| − δ

𝑠𝑟1−𝑟2

] 

where Φ represents the standard normal probability function. When p ≤ α, the null hypothesis is 

rejected, and the researcher can conclude that the correlation coefficients are equivalent. 

5.3. Equivalence tests comparing dependent correlation coefficients 

 A number of difference-based t-tests comparing dependent correlation coefficients exist 

in the literature (e.g., Dunn & Clark, 1969; Hotelling, 1931; Olkin, 1967; Williams, 1959). Our 

equivalence tests for comparing dependent correlations are based on Williams’ modification to 
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Hotelling’s test for comparing overlapping dependent correlations. This test was used as the 

basis for the proposed equivalence tests because it has been compared to the other methods and 

has been recommended for its overall statistical properties (Boyer, Palachek, & Shucany, 1983; 

Hittner, May, & Silver, 2003; Steiger, 1980). The first proposed equivalence test comparing 

dependent correlation coefficients is based on the TOST (TOST-ρ-D). Its two null hypotheses, 

H01: ρ12
− ρ

13
≤ −δ and H02: ρ12

− ρ
13

≥ δ are rejected when 𝑡1 ≥ 𝑡1−𝛼,𝑁−3 and 𝑡2 ≤ 𝑡𝛼,𝑁−3 

where: 

𝑡1 =  [𝑟12 − 𝑟13 − (−δ)]√
(𝑁 − 1)(1 + 𝑟23)

2 (
𝑁−1

𝑁−3
) |𝑅| +

(𝑟12+𝑟13)2

4
(1 − 𝑟23)3

 

𝑡2 = (𝑟12 − 𝑟13 − δ)√
(𝑁 − 1)(1 + 𝑟23)

2 (
𝑁−1

𝑁−3
) |𝑅| +

(𝑟12+𝑟13)2

4
(1 − 𝑟23)3

 

|𝑅| = (1 − 𝑟12
2 − 𝑟13

2 − 𝑟23
2 ) + (2𝑟12𝑟13𝑟23). t1 and t2 are distributed on N-3 df. When both t 

statistics are statistically significant, r12 and r13 are considered equivalent since the difference 

between the correlations falls within the equivalence interval. 

 Our second proposed equivalence test for dependent correlation coefficients (AH-ρ-D) 

uses Anderson and Hauck’s (1983) formula. When p ≤ α, the null hypothesis, H0: ρ12
− ρ

13
≤

−δ or ρ
12

− ρ
13

≥ δ is rejected, and the researcher can conclude that the correlation coefficients 

are equivalent. The p value of the tests is approximated as 

𝑝 = Φ [(|𝑟12 − 𝑟13| − δ)√
(𝑁 − 1)(1 + 𝑟23)

2 (
𝑁−1

𝑁−3
) |𝑅| +

(𝑟12+𝑟13)2

4
(1 − 𝑟23)3

] 

−Φ [(−|𝑟12 − 𝑟13| − δ)√
(𝑁 − 1)(1 + 𝑟23)

2 (
𝑁−1

𝑁−3
) |𝑅| +

(𝑟12+𝑟13)2

4
(1 − 𝑟23)3

] 

where Φ represents the standard normal probability function. 
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6. Study Goals 

There are four main goals of the current study: 1) Demonstrate that traditional difference-

based NHSTs for comparing correlation coefficients or regression coefficients are inappropriate 

when the goal is to determine that these coefficients are equivalent; 2) Evaluate and compare the 

power and Type I error rates of the equivalence tests using a range of sample sizes, effect sizes, 

and population correlation coefficients; 3) Make recommendations for behavioural researchers 

about which of these novel tests are most practical for use; 4) Make available open-source 

software for conducting the recommended analyses (R Functions to conduct the equivalence 

procedures discussed in this paper are available at the author’s website). 

7. Method 

A two part Monte Carlo study was used to evaluate the Type I error rates and power of 

the variations of equivalence tests for comparing regression and correlation coefficients. In part 

one (independent ρs/βs), multivariate normal data were simulated using the ‘rmvnorm’ function 

of the ‘mvtnorm’ package in the open source statistical software program R (R Development 

Core Team, 2013). In each condition, values for r1 and b1 were simulated from a specified 

correlation matrix (ρ1) and r2 and b2 were simulated from a second correlation matrix (ρ2). 

Across all of the conditions, the first population correlation matrix remained the same while the 

second population correlation matrix differed from the first by a specified effect size. The 

following equivalence test statistics were utilized: TOST of independent βs (TOST-β), AH test 

of independent βs (AH-β), TOST of independent ρs (TOST-ρ), Kraatz’s test of independent ρs 

(KTOST-ρ), and AH test of independent ρs (AH-ρ). Part two (dependent correlations) involved 

one population correlation matrix using the same data generation method described in part one. 

Here, the correlation matrix reflected three population correlations for one group, ρ12, ρ13, and 
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ρ23. Part two examined the TOST of dependent ρs (TOST-ρ-D) and the AH test of dependent ρs 

(AH-ρ-D).  

The study’s manipulated variables were sample size, effect size, and values in the 

population correlation matrices (i.e., ρ1 and ρ2 for independent correlations and ρ12, ρ13, and ρ23 

for the dependent correlations). The equivalence interval was set at (-.1, .1) for all of the 

conditions investigated because .1 is the smallest correlation acknowledged in Cohen’s cut-offs 

for small, medium and large correlations (Cohen, 1962). In other words, a difference in 

correlations of .1 is deemed minimally important. Although the establishment of δ in this study 

was set somewhat arbitrarily since there was no predefined research question, one should note 

that an appropriate value of δ will vary depending on the nature of the study. The effect size 

naturally differed for the Type I error and power conditions. For part one (independent groups), a 

Type I error condition was created for the equivalence tests by setting the difference between ρ1 

and ρ2 exactly equal to δ. This is where one would expect to see the highest probability of false 

rejections for the equivalence tests (i.e., α) since the difference is at the bounds of δ. In the power 

condition for the equivalence tests, the population parameters were either exactly equal (ρ1 - ρ2  = 

0) or differed by .05 (ρ1 - ρ2  = .05). For each of the replications, the values of ρ ranged from .1 to 

.85. Both equal and unequal sample size conditions were investigated. 

The simulation conditions were similar for part two (dependent correlations). The Type I 

error condition included a difference between ρ12 and ρ13 exactly equal to δ, and the two power 

conditions were ρ12 = ρ13 or ρ12 - ρ13 = .05. For each of the replications, the values of ρ12 and ρ13 

ranged from .1 to .85, and the values of ρ23 were .2, .4, and .6. We chose these parameter values 

to reflect values commonly encountered by behavioural science researchers.  
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The nominal α level was set at .05 for all analyses and 5000 replications were conducted 

per condition. More detailed information about the simulation conditions and manipulated 

parameters for both parts of the simulation study are provided in Table 1. 

____________________________ 

INSERT TABLE 1 ABOUT HERE 

____________________________ 

 

Traditional difference-based tests comparing r1 and r2, b1 and b2, or r12 and r13 were also 

conducted in order to provide a comparison between the equivalence tests and difference-based 

methods when the goal is to find similarity between two variables. Note that when comparing 

equivalence and difference-based tests the Type I error and power terminology is reversed 

between the two methods (e.g., Type I error condition for equivalence tests is a power condition 

in difference-based tests). As such, the number of rejections (p ≤ α) for equivalence tests was 

compared to the number of non-rejections (p > α) in difference-based methods so that both tests 

are reflecting the probability of concluding equivalence. Bradley (1978) proposed a liberal robust 

interval for Type I error rates of .5α ≤ p ≤ 1.5α. Thus, in the current study, a test statistic’s Type I 

error rates will be deemed appropriate if the empirical Type I error rate falls within these bounds 

(.025, .075).  

8. Results 

Given that the pattern of results was similar across many conditions, only a subset of the 

results are presented below. Specifically, results for the conditions where ρ1 - ρ2  = 0.05, ρ12 – ρ13  

= 0.05, and results for the unequal sample size conditions are omitted because they mirror the 

results for ρ1 = ρ2, ρ12 = ρ13, and the equal sample size conditions.  
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8.1. Independent correlation and regression coefficients 

8.11. Probability of falsely concluding equivalence. The probability of falsely 

concluding equivalence for each of the equivalence tests (p ≤ α when the difference between ρs 

or βs falls at or outside of -δ,δ) and the difference-based tests (p > α) are presented in Table 2. 

The results were generally similar for the various equivalence tests of independent ρs and βs, 

although some important differences emerged. 

At the smaller sample sizes, differences in Type I error rates were observed for the 

TOST-β and AH-β. Specifically, the Type I error rates for the TOST-β were too conservative at 

lower sample sizes; the null hypothesis was never rejected for sample sizes below 250 per group. 

This was not the case for the AH-β. Its Type I error rates were stable around α regardless of 

sample size. At the maximum sample size the error rates for the TOST-β and AH-β were similar. 

The same pattern of results was observed for the equivalence tests of independent ρs. However, 

error rates for all correlation-based equivalence tests increased as ρ approached 1.00. At the 

lower range of ρ, the results of the TOST-ρ were similar to the TOST-β, but empirical Type I 

error rates increased as the values of ρ increased. Error rates of the TOST-ρ were well 

maintained at α for group sample sizes of 100 for mid-ranged values of ρ but were too liberal at 

the highest values of ρ. The results from the KTOST-ρ were virtually identical to those of the 

TOST-ρ and the empirical Type I error rates for AH-ρ were consistently accurate and minimally 

affected by the value of ρ.  

The difference-based methods (diff-ρ and diff-β) displayed inappropriate rates of 

declaring equivalence when the group population values of ρ were not equal. The results of the 

diff-ρ were affected more by the values of ρ than diff-β. As seen in Table 2, the probability of 

falsely declaring equivalence was as high as .924 for sample sizes of 50 per group, with this 
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number decreasing as sample size increased, and as the values of ρ1 and ρ2 increased. For sample 

sizes of 1000 per group and ρs as high as .7 or .8, the rates decreased down to .01 or even exactly 

zero (indicating that the test now had sufficient power to detect a difference of ρ1 – ρ2 = .1). 

____________________________ 

INSERT TABLE 2 ABOUT HERE 

____________________________ 

____________________________ 

INSERT TABLE 3 ABOUT HERE 

____________________________ 

 

8.12. Probability of correctly concluding equivalence. The results for the probability of 

concluding equivalence are presented in Table 3. When higher values of ρ were combined with 

large sample sizes, acceptable levels of power are observed (> .80) for all of the equivalence 

tests. However, power for the TOST-β test was zero for sample sizes less than 250 per group 

when values of ρ were less than .5. The AH-β displayed low power at smaller sample sizes, 

although it consistently had higher power than the TOST-β in these conditions. The TOST-ρ 

produced similar results to the TOST-β when ρ is around .5. At the higher range of ρ with the 

largest sample size, the TOST-ρ’s power reached 1.00. Similar results were observed for the 

KTOST-ρ. The AH-ρ also displayed problems with power for smaller sample sizes, especially at 

the lower range of ρ, but consistently had higher power than the TOST-ρ and KTOST-ρ. At 

sample sizes of 1000 per group, the power of the AH-ρ, TOST-ρ, and KTOST-ρ were all similar.  

Because the diff-β and diff-ρ are designed to find differences, the probability of 

concluding equivalence is maintained at approximately 100(1-α)% regardless of sample size 
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when the population correlations or regression coefficients are exactly equal. When there are 

slight differences between the groups (e.g., ρ1 – ρ2 = .05), rates of concluding equivalence 

expectedly decreased as sample size increased because the traditional tests’ power to find a 

difference increases when N increases. 

8.2. Dependent correlation coefficients 

8.21. Probability of falsely concluding equivalence. Rates of falsely concluding 

equivalence when ρ23 = .4 are presented in Table 4. Results were similar for the other two tested 

values of ρ23, although smaller values resulted in more conservative rates at small sample sizes 

for the TOST-ρ-D and larger values resulted in slightly more liberal error rates. Generally, the 

same pattern of results emerged for tests of dependent correlations as was seen when comparing 

independent groups’ ρs. Specifically, the TOST-ρ-D displayed Type I error rates that were too 

conservative for sample sizes less than 500 per group whereas the AH-ρ-D demonstrated 

accurate rates for all sample sizes investigated. The traditional test’s (diff-ρ-D) probability of 

falsely declaring equivalence was much too high at small sample sizes and decreased as sample 

size increased.  

8.22. Probability of correctly concluding equivalence. Rates of concluding equivalence 

when ρ23 = .4 are presented in Table 5. Decreasing the value of ρ23 demonstrated a drop in power 

for both the equivalence tests, and increasing it resulted in higher power for both the TOST-ρ-D 

and AH-ρ-D. The same pattern of results was observed for different values of ρ23. Both 

equivalence tests demonstrated inadequate power for sample sizes less than 500. However, a 

power advantage was observed for the AH-ρ-D at smaller sample sizes with similar results to the 

TOST-ρ-D at the largest sample size. Again, the rates of concluding equivalence for the diff-ρ-D 

did not deviate regardless of sample size when ρ12 – ρ13 = 0 but decreased as sample size 
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increased for the ρ12 – ρ13 = .05 condition. 

____________________________ 

INSERT TABLE 4 ABOUT HERE 

____________________________ 

____________________________ 

INSERT TABLE 5 ABOUT HERE 

____________________________ 

9. Discussion 

Equivalence testing has many useful applications in psychology. However, few 

behavioural researchers use equivalence tests despite having research goals that are congruent 

with finding equivalence. One area where equivalence tests for comparing independent 

regression or correlation coefficients is especially relevant is research focusing on cultural 

similarities. Researchers often seek to demonstrate that relationships between variables (e.g., 

social support and depression) are consistent cross-nationally or cross-culturally. Several 

examples of other research designs in psychology that would benefit from equivalence testing 

are presented in previous papers (e.g., Cribbie et al., 2004; Kendall et al., 1999; Rogers et al., 

1993; Stegner, Bostrom, & Greenfield, 1996). This study provides researchers with appropriate 

methods to answer their research questions when the interest is in demonstrating equivalence or 

similarity of correlation or regression coefficients. 

9.1. Inappropriateness of difference-based tests  

Since equivalence testing methods are rarely employed in psychology, behavioural 

researchers continue to use difference-based methods whereby a non-rejection of the null 

hypothesis is interpreted as equivalence.When used to demonstrate similar relationships, 
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traditional difference-based NHSTs demonstrate inappropriate rates of concluding equivalence. 

For example, the probability to find the effect associated with the alternative hypothesis should 

be directly related to sample size, i.e., increasing sample size should increase the chances of 

finding the effect. Since traditional difference-based methods are designed to test for differences, 

finding equivalence is contrary to their purpose. This results in a reverse relationship with 

sample size and finding an effect consistent with the researcher’s hypothesis. In smaller sample 

sizes, equivalence is concluded approximately 100(1- α)% of the time using the difference-based 

methods. Thus, when the values of ρ are exactly equivalent, the power to find equivalence did 

not change as sample size increased. When there were slight differences between ρs (but still 

within the equivalence interval), the probability of declaring equivalence was high with small 

sample sizes, but decreased as sample size increased. Observing a decrease in power to find the 

researcher’s effect of interest when sample size increases is contrary to research practice. 

Researchers aim for a large sample size to ensure adequate power and generalizability of results. 

This issue suggests that difference-based methods are not valid for examining equivalence. 

Instead, researchers should use equivalence tests if they would like to find equivalence of two 

correlation or regression coefficients. These tests are theoretically justified and have desirable 

statistical properties (e.g., power to find the effect of interest increases as sample size increases; 

null hypotheses are rejected, not accepted). 

9.2. Differences between the equivalence tests  

As has been noted in the literature, the TOST procedure can be too conservative when 

power is low or variance increases (Berger & Hsu, 1996; Brown et al., 1997). This simulation 

study confirmed this finding for the TOST-β, TOST-ρ, KTOST-ρ, and TOST-ρ-D. In contrast, 

the AH-based equivalence tests had accurate Type I error rates across all sample sizes and values 
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of ρ. These findings are contrary to the literature that has reported that the AH procedure’s error 

rates can be overly liberal (Brown et al., 1997; Ennis & Ennis, 2009; Nam & Munk, 1994). The 

power of each of the equivalence tests was almost identical for higher sample sizes. In the lower 

sample size conditions the AH tests consistently had higher power than the TOST tests, although 

its power was still unsatisfactory by the standards of behavioural researchers.  

9.3. Low power  

As has been mentioned, researchers ideally aim for power of at least .80. Looking at the 

power results of the equivalence tests clearly demonstrates inadequate power for sample sizes 

less than 1000 per group for independent groups or 500 in the dependent correlation design. The 

power for all of the equivalence tests is considered to be low for the types of sample sizes that 

would typically be seen in psychology. However, current t-tests comparing regression or 

correlation coefficients display lower power in comparison to other popular statistical analyses 

such as analyses of mean differences (Howell, 2009). Since ρ must fall between -1.00 and +1.00, 

the difference between the two ρs relative to their standard error will typically be lower in 

comparison to a strict mean difference with no bounded scale. In other words, the difference-

based NHSTs comparing regression or correlations also display low power when used for their 

proper purpose of finding a difference. Researchers with a goal to find either equivalence or 

difference between regression/correlation coefficients should be aware that this research design 

requires large sample sizes to ensure sufficient power. Another point worth mentioning is that 

power is also related to the size of the equivalence interval. If the specified equivalence interval 

is quite strict or small, power will be lower than if one had used a larger equivalence interval. 

Given that the study used simulations and did not include a substantive hypothesis regarding 

equivalence of regression or correlation coefficients, it is possible that the equivalence interval 
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we used may have resulted in lower power than what applied researchers would observe. 

9.4. Choosing an equivalence interval  

The magnitude of the equivalence interval is an important topic when discussing 

equivalence tests. Our equivalence interval, δ, was set at .1. We chose this value because we 

decided that it represents the smallest meaningful difference between two correlation or 

regression coefficients within the context of our simulation study. Values larger than .1 may 

represent an important effect for the relationship between two correlation coefficients. A smaller 

value for δ, such as .05, might be too stringent an interval to declare equivalence, especially 

given that t-tests comparing regression or correlation coefficients have lower power than other 

analyses such as t-tests comparing means. Cohen’s standards for effect sizes also deem .1 a small 

effect size among correlation differences (Cohen, 1962). While these standards may provide a 

useful guide in choosing an equivalence interval, the most important aspect when selecting δ is 

to choose, a priori, a value that can be considered the largest difference between coefficients that 

a researcher would consider inconsequential. The equivalence interval could take the form of 

specific values, as was done in the simulation study, or the difference could correspond to a 

particular standardized effect size (e.g., r2 of .01 corresponds to 1% of the shared variance and an 

r value of .1). While a common criticism is that setting δ introduces bias because a researcher 

may choose any value that they like for δ, this is not a valid concern as δ must be theoretically 

justified. Rogers and colleagues (1993, p. 564) wisely noted that “as with any statistical analysis, 

equivalency procedures must involve thoughtful planning by the investigator.” As long as the 

researcher chooses a value for δ before collecting data, and the value is appropriate for the 

research problem being addressed, the researcher is in no way biasing his or her results.   

9.5. Recommendations 
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Based on the results of the current simulation study, traditional difference-based t-tests 

for regression and correlation coefficients are not recommended when the researcher’s goal is 

establishing equivalence. Their rates of falsely concluding equivalence are too high, and the best 

way to find equivalence is to have a small sample size. Thirty years ago Blackwelder (1982, p. 

346) concisely stated that “p is a measure of the evidence against the null hypothesis, not for it, 

and insufficient evidence to reject the null hypothesis does not imply sufficient evidence to 

accept it.” Many have argued that researchers should never accept the null hypothesis, but 

researchers continue to do so when they use non-significant results to justify equality. 

 In conclusion, difference-based NHST is never a valid statistical method if the 

researcher’s goal is to demonstrate equivalence. Equivalence testing procedures are the 

appropriate methods for finding equivalence of population parameters such as ρ or β. 

Specifically, we recommend the Anderson and Hauck equivalence test for comparing regression 

or correlation coefficients. This procedure was found to maintain accurate Type I error rates and 

demonstrated higher power than the TOST at smaller sample sizes. Given the lower power of 

statistical tests comparing regression and correlation coefficients, it is also recommended that 

researchers collect a large amount of data before running these statistical procedures to ensure 

adequate power for their hypotheses.  

9.6. Limitations and future directions 

 One potential limitation is that all of the data used were simulated. Here, the data were all 

normally distributed, whereas the data typically found in psychology often demonstrate some 

skewness and kurtosis. An important task would then be to examine the performance of 

equivalence tests using data more typical of that encountered in psychological studies. Also, 

other conditions could have been tested such as different values of  or using other sample sizes. 
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However, these results would likely be predictable based on the results of the current study and 

are probably unnecessary. One future direction is to explore techniques for improving the power 

of equivalence tests when comparing regression and correlation coefficients for their 

employment in psychology, given their low power.  
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Table 1 

Summary of Simulation Parameters 

 

Parameter Values 

δ 

 

Independent Groups 

 

.1 

ρ1 

ρ2 

.1, .2, .3, .4, .5, .6, .7, .8 

.1, .2, .3, .4, .5, .6, .7, .8, .15, 25, .35, .45, .55, .65, .75, .85 

 

Effect Size (ρ1 - ρ2) 

 

n (per group) 

0 (power), .05 (power), .1 (Type I error) 

 

25, 50, 75, 100, 125, 150, 250, 375, 500, 750 1000, 1500 

 

Dependent 

 

ρ12 

ρ13 

ρ23 

.1, .2, .3, .4, .5, .6, .7, .8 

.1, .2, .3, .4, .5, .6, .7, .8, .15, 25, .35, .45, .55, .65, .75, .85 

.2, .4, .6 

 

Effect Size (ρ12 - ρ13) 

 

N 

0 (power), .05 (power), .1 (Type I error) 

 

50, 100, 250, 500, 1000 
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Table 2 

Probability of Falsely Declaring Equivalence for Independent Groups 

 

ρ1 ρ2 n (per group) Diff-β Diff-ρ TOST-β AH-β TOST-ρ KTOST-ρ AH-ρ 

.1 .2 50 

100 

250 

500 

1000 

.912 

.894 

.799 

.631 

.378 

.918 

.894 

.800 

.630 

.369 

0 

0 

0 

0 

.046 

.047 

.048 

.048 

.050 

.048 

0 

0 

0 

0 

.047 

0 

0 

0 

0 

.047 

.052 

.045 

.044 

.049 

.048 

.2 .3 50 

100 

250 

500 

1000 

.914 

.883 

.800 

.631 

.364 

.912 

.878 

.785 

.614 

.334 

0 

0 

0 

.003 

.046 

.052 

.049 

.053 

.047 

.047 

0 

0 

0 

.009 

.048 

0 

0 

0 

.009 

.047 

.043 

.050 

.047 

.045 

.049 

.3 .4 50 

100 

250 

500 

1000 

.924 

.882 

.779 

.603 

.322 

.915 

.872 

.753 

.556 

.266 

0 

0 

0 

.008 

.046 

.050 

.049 

.047 

.054 

.047 

0 

0 

0 

.027 

.045 

0 

0 

0 

.027 

.045 

.050 

.052 

.051 

.055 

.045 

.4 .5 50 

100 

250 

500 

1000 

.910 

.880 

.756 

.573 

.300 

.902 

.859 

.709 

.493 

.198 

0 

0 

0 

.022 

.044 

.050 

.054 

.052 

.052 

.045 

0 

0 

0 

.042 

.044 

0 

0 

0 

.041 

.044 

.047 

.049 

.05 

.041 

.044 

.5 .6 50 

100 

250 

500 

1000 

.916 

.862 

.728 

.525 

.243 

.895 

.833 

.633 

.363 

.107 

0 

0 

0 

.032 

.050 

.049 

.050 

.048 

.048 

.050 

0 

0 

.004 

.047 

.054 

0 

0 

.004 

.047 

.052 

.050 

.048 

.047 

.051 

.052 
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(continued) 

 

ρ1 ρ2 n (per group) Diff-β Diff-ρ TOST-β AH-β TOST-ρ KTOST-ρ AH-ρ 

.6 .7 50 

100 

250 

500 

1000 

.906 

.850 

.688 

.448 

.156 

.872 

.775 

.505 

.209 

.025 

0 

0 

0 

.039 

.050 

.054 

.051 

.051 

.044 

.050 

0 

0 

.043 

.053 

.053 

0 

0 

.041 

.053 

.051 

.051 

.052 

.055 

.052 

.051 

.7 .8 50 

100 

250 

500 

1000 

.894 

.817 

.612 

.340 

.079 

.809 

.638 

.263 

.052 

.001 

0 

0 

.009 

.052 

.050 

.052 

.050 

.044 

.052 

.050 

0 

.020 

.055 

.064 

.056 

0 

.016 

.052 

.059 

.050 

.057 

.056 

.052 

.059 

.050 

.8 .9 50 

100 

250 

500 

1000 

.845 

.727 

.438 

.142 

.01 

.557 

.259 

.014 

0 

0 

0 

0 

0 

.044 

.048 

.049 

.049 

.048 

.050 

.048 

.072 

.081 

.078 

.079 

.082 

.055 

.066 

.057 

.057 

.059 

.049 

.066 

.057 

.057 

.059 

Note: α = .05; 5000 replications; Diff-β = difference-based regression test, Diff-ρ = difference-based correlation test, TOST-β = two 

one-sided tests regression equivalence method, AH-β = Anderson & Hauck regression equivalence test, TOST-ρ = two one-sided tests 

correlation equivalence method, KTOST-ρ = Kraatz’s untransformed two one-sided tests correlation equivalence method, AH-ρ = 

Anderson & Hauck’s correlation equivalence test; Type I error condition for equivalence tests; power condition for difference-based 

tests; Bolded numbers indicate that the rates fall within Bradley’s liberal robust interval (.025 to .075) 
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Table 3 

 

Probability of Declaring Equivalence for Independent Groups 

 

ρ1 ρ2 n (per group) Diff-β Diff-ρ TOST-β AH-β TOST-ρ KTOST-ρ AH-ρ 

.1 .1 50 

100 

250 

500 

1000 

.942 

.948 

.950 

.949 

.950 

.942 

.946 

.952 

.948 

.950 

0 

0 

0 

.004 

.458 

.057 

.061 

.085 

.181 

.470 

0 

0 

0 

0 

.466 

0 

0 

0 

0 

.464 

.056 

.067 

.095 

.183 

.476 

.2 .2 50 

100 

250 

500 

1000 

.951 

.948 

.956 

.953 

.948 

.951 

.949 

.956 

.952 

.947 

0 

0 

0 

.008 

.476 

.053 

.065 

.101 

.196 

.487 

0 

0 

0 

.009 

.512 

0 

0 

0 

.009 

.512 

.058 

.071 

.101 

.202 

.518 

.3 .3 50 

100 

250 

500 

1000 

.949 

.945 

.948 

.945 

.949 

.950 

.948 

.949 

.943 

.950 

0 

0 

0 

.021 

.517 

.055 

.065 

.097 

.193 

.524 

0 

0 

0 

.069 

.573 

0 

0 

0 

.069 

.573 

.055 

.071 

.103 

.212 

.575 

.4 .4 50 

100 

250 

500 

1000 

.949 

.953 

.951 

.947 

.948 

.956 

.952 

.956 

.950 

.954 

0 

0 

0 

.059 

.575 

.062 

.073 

.101 

.210 

.578 

0 

0 

0 

.188 

.702 

0 

0 

0 

.187 

.699 

.059 

.069 

.115 

.268 

.700 
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(continued) 

 

 

ρ1 ρ2 n (per group) Diff-β Diff-ρ TOST-β AH-β TOST-ρ KTOST-ρ AH-ρ 

.5 .5 50 

100 

250 

500 

1000 

.946 

.947 

.951 

.955 

.954 

.949 

.948 

.950 

.956 

.954 

0 

0 

0 

.138 

.651 

.059 

.070 

.113 

.252 

.653 

0 

0 

0 

.359 

.821 

0 

0 

0 

.356 

.820 

.061 

.081 

.152 

.383 

.820 

.6 .6 50 

100 

250 

500 

1000 

.949 

.953 

.950 

.953 

.950 

.945 

.947 

.951 

.951 

.952 

0 

0 

0 

.254 

.744 

.059 

.075 

.128 

.313 

.744 

0 

0 

.086 

.593 

.935 

0 

0 

.084 

.588 

.934 

.069 

.105 

.222 

.591 

.934 

.7 .7 50 

100 

250 

500 

1000 

.947 

.945 

.949 

.952 

.950 

.954 

.953 

.947 

.946 

.947 

0 

0 

.003 

.413 

.859 

.054 

.076 

.176 

.433 

.859 

0 

.005 

.413 

.846 

.993 

0 

.004 

.403 

.841 

.993 

.082 

.129 

.427 

.841 

.933 

.8 .8 50 

100 

250 

500 

1000 

.946 

.949 

.941 

.947 

.957 

.945 

.948 

.947 

.945 

.949 

0 

0 

.167 

.670 

.969 

.071 

.100 

.266 

.672 

.969 

.023 

.265 

.859 

.992 

1.000 

.018 

.242 

.843 

.991 

1.000 

.137 

.316 

.843 

.991 

1.000 

Note: α = .05; 5000 replications; Diff-β = difference-based regression test, Diff-ρ = difference-based correlation test, TOST-β = two 

one-sided tests regression equivalence method, AH-β = Anderson & Hauck regression equivalence test, TOST-ρ = two one-sided tests 

correlation equivalence method, KTOST-ρ = Kraatz’s untransformed two one-sided tests correlation equivalence method, AH-ρ = 

Anderson & Hauck’s correlation equivalence test; Power condition for equivalence tests; Type I error condition for difference-based 

tests 
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Table 4 

 

Probability of Falsely Declaring Equivalence When ρ23 = .4 

 

ρ12 ρ13 N Diff-ρ-D TOST-ρ-D AH-ρ-D 

.1 .2 50 

100 

250 

500 

1000 

.906 

.853 

.699 

.459 

.183 

0 

0 

0 

.045 

.060 

.046 

.052 

.053 

.051 

.061 

.2 .3 50 

100 

250 

500 

1000 

.906 

.859 

.695 

.445 

.170 

0 

0 

0 

.046 

.055 

.055 

.055 

.053 

.053 

.055 

.3 .4 50 

100 

250 

500 

1000 

.892 

.851 

.677 

.422 

.152 

0 

0 

0 

.046 

.054 

.046 

.055 

.048 

.051 

.055 

.4 .5 50 

100 

250 

500 

1000 

.892 

.828 

.657 

.381 

.116 

0 

0 

0 

.047 

.053 

.049 

.050 

.049 

.050 

.053 

.5 .6 50 

100 

250 

500 

1000 

.887 

.810 

.611 

.319 

.077 

0 

0 

.01 

.044 

.048 

.053 

.052 

.053 

.046 

.048 

.6 .7 50 

100 

250 

500 

1000 

.872 

.770 

.532 

.256 

.038 

0 

0 

.027 

.054 

.053 

.055 

.051 

.047 

.056 

.054 

.7 .8 50 

100 

250 

500 

1000 

.848 

.743 

.425 

.135 

.011 

0 

0 

.052 

.051 

.052 

.055 

.053 

.057 

.052 

.052 

Note: α = .05; 5000 replications; Diff-ρ-D = difference-based test comparing dependent 

correlations, TOST-ρ-D = two one-sided tests dependent correlation equivalence method, AH-ρ-

D = Anderson & Hauck equivalence test of dependent correlation coefficients. Type I error 

condition for equivalence tests; power condition for difference-based test; Bolded numbers 

indicate that the rates fall within Bradley’s liberal robust interval (.025 to .075) 
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Table 5 

 

Probability of Declaring Equivalence When ρ23 = .4 

 

ρ12 ρ13 N Diff-ρ-D TOST-ρ-D AH-ρ-D 

.1 .1 50 

100 

250 

500 

1000 

.948 

.952 

.945 

.949 

.951 

0 

0 

0 

.316 

.786 

.060 

.078 

.136 

.360 

.788 

.2 .2 50 

100 

250 

500 

1000 

.957 

.950 

.946 

.947 

.947 

0 

0 

0 

.308 

.782 

.059 

.073 

.141 

.347 

.783 

.3 .3 50 

100 

250 

500 

1000 

.953 

.948 

.951 

.953 

.948 

0 

0 

0 

.356 

.812 

.062 

.076 

.146 

.390 

.813 

.4 .4 50 

100 

250 

500 

1000 

.950 

.954 

.949 

.951 

.947 

0 

0 

.003 

.391 

.833 

.062 

.084 

.166 

.415 

.835 

.5 .5 50 

100 

250 

500 

1000 

.961 

.954 

.952 

.953 

.955 

0 

0 

.024 

.492 

.895 

.071 

.088 

.194 

.507 

.895 

.6 .6 50 

100 

250 

500 

1000 

.951 

.949 

.952 

.944 

.949 

0 

0 

.092 

.582 

.941 

.064 

.090 

.228 

.585 

.942 

.7 .7 50 

100 

250 

500 

1000 

.949 

.954 

.957 

.948 

.949 

0 

0 

.241 

.745 

.979 

.074 

.117 

.312 

.747 

.980 

.8 .8 50 

100 

250 

500 

1000 

.946 

.950 

.945 

.948 

.949 

.002 

.024 

.536 

.914 

.999 

.088 

.164 

.551 

.915 

.999 

Note: Note: α = .05; 5000 replications; Diff-ρ-D = difference-based test comparing dependent 
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correlations, TOST-ρ-D = two one-sided tests dependent correlation equivalence method, AH-ρ-

D = Anderson & Hauck equivalence test of dependent correlation coefficients; Power condition 

for equivalence tests; Type I error condition for difference-based tests 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


