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Abstract

When simultaneously undertaking many tests of significance researchers are

faced with the problem of how best to control the probability of committing a Type I

error.  The familywise approach deals directly with multiplicity problems by setting a

level of significance for an entire set (family) of related hypotheses, while the

comparison approach ignores the multiplicity issue by setting the rate of error on each

individual contrast/test/hypothesis. A new formulation of control presented by Benjamini

and Hochberg, their  does not provide as stringent control as thefalse discovery rate,

familywise rate, but concomitant with this relaxing in stringency is an increase in

sensitivity to detect effects, compared to familywise control.  Type I error and power

rates for four relatively powerful and easy-to-compute pairwise multiple comparison

procedures were compared to the Benjamni and Hochberg technique for various one-way

layouts using test statistics that do not assume variance homogeneity.



False Discovery Rate      3

The Pairwise Multiple Comparison Multiplicity Problem:

An Alternative Approach to Familywise/Comparisonwise Type I Error Control

The multiplicity problem in statistical inference refers to selecting the statistically

significant findings from a large set of findings (tests) to support one's research

hypotheses. Selecting the statistically significant findings from a larger pool of results

that also contain nonsignificant findings is problematic since when multiple tests of

significance are computed the probability that at least one will be significant by chance

alone increases with the number of tests examined. Discussions on how to deal with

multiplicity of testing have permeated many literatures (e.g., Psychology, Statistics) for

decades and continue to this day. In one camp are those who believe that the occurrence

of any false positive must be guarded at all costs (see Games, 1971; Miller, 1981; Ryan,

1959, 1960, 1962; Westfall & Young, 1993). That is, as promulgated by Thomas Ryan,

pursuing a false lead can result in the waste of much time and expense, and is an error of

inference that accordingly should be stringently controlled. Clark (1976) also believes in

stringent Type I error control, however, his rationale, differes from that of Ryan.

Specifically, Clark (1976, p. 258) believes that because of the prejudice to only report

significant results, Type I errors, once made, “are very difficult to correct.” Clark (p.

258), citing Bakan (1966), states “the danger to science of the Type I error is much more

serious than the Type II error because highly significant results appear definitive and tend

to discourage further investigation. ... A stray Type I error can indeed by catastrophic.” In

this vein, Greenwald (1975, pp. 13-15) cites examples regarding the difficulty of

publishing corrections to previously published findings. Regardless of the rationale that

have been suggested for stringent Type I error control, those in this camp deal with the

multiplicity issue by setting the level of significance ( ) for the entire set of tests!

computed.

For example, in the pairwise multiple comparison problem, Tukey's (1953)

multiple comparison procedure (MCP) uses a critical value wherein the probability of
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making at least one Type I error in the set of pairwise contrast tests is equal to . This!

type of control has been referred to in the literature as the experimentwise or familywise

error rate of control. These respective terms come from setting a level of significance

over all tests computed in an experiment, hence experimentwise control, or setting the

level of significance over a set (family) of conceptually related tests, hence familywise

control. Multiple comparisonists seem to have settled on the familywise label. Thus, in

the remainder of the paper, when we speak about overall error control, we are referring to

familywise control. As indicated, for the set of pairwise tests, Tukey's procedure sets a

familywise rate of error for the family consisting of all pairwise comparisons.

Those in the opposing camp maintain that stringent Type I error control results in

a loss of statistical power and consequently important treatment effects go undetected

(see Rothman, 1990; Saville, 1990; Wilson, 1962). Members of this camp typically

believe the error rate should be set per comparison (per comparison error

rate probability of rejecting a given comparison) and usually recommend a fiveœ

percent level of significance, allowing the overall error rate to inflate with the number of

tests computed. In effect, those who adopt per comparison control ignore the multiplicity

issue.

It is not the intention of this paper to advocate one position over the other, but

rather, to present and examine another conceptualization of error which could be viewed

as a compromise position between these two camps, and consequently may be an

approach experimenters who are uncertain of which extreme approach to follow may be

more comfortable adopting.

The False Discovery Rate

Work in the area of multiple hypothesis testing is far from static, and one of the

newer interesting contributions to this area is an alternative conceptualization for

defining errors in the multiple testing problem; that is the false discovery rate (FDR),

presented by Benjamini and Hochberg (1995). FDR is defined by these authors as the
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expected proportion of the number of erroneous rejections to the total number of

rejections. The motivation for such control, as Shaffer (1995) suggests, stems from a

common misconception regarding the overall error rate. That is, some believe that the

overall rate applied to a family of hypotheses indicates that on average “only a proportion

! of the rejected hypotheses are true ones, i.e., are falsely rejected” (Shaffer, 1995, p.

567). This is clearly a misconception, for as Shaffer notes, if all hypotheses are true,

“then 100% of rejected hypotheses are true, i.e., are rejected in error, in those situations

in which any rejections occur” (p. 567). Such a misconception, however, suggests setting

a rate of error  for the proportion of rejections which are erroneous, hence the FDR.

We elaborate on the FDR within the context of pairwise comparisons. Suppose

we have J (j 1,   , J) means, , ,  , , and our interest is in testing the familyœ á á. . .1 2 J

of m J(J 1)/2 pairwise hypotheses, H : 0, of which m  are true. Let Sœ   œi j j 0. . w

equal the number of correctly rejected hypotheses from the set of R rejections; the

number of falsely rejected pairs will be V. Benjamini and Hochberg (1995) presented a

summarization of the relationship between these random variables which we re-present in

Table 1. In terms of the random variable V, the per comparison error rate is (V/m),X

while the familywise rate is given by P(V 1). Thus, testing each and every comparison

at  guarantees that (V/m) , while testing each and every comparison at /m! X ! !Ÿ

(Bonferroni) guarantees P(V 1) . Ÿ !

According to Benjamini and Hochberg (1995) the proportion of errors committed

by falsely rejecting null hypotheses can be expressed through the random variable

Q V/(V S), that is, the proportion of rejected hypotheses which are erroneouslyœ 

rejected. It is important to note that Q is defined to be zero when R 0; that is, the errorœ

rate is zero when there are no rejections. FDR was defined by Benjamini and Hochberg

as the mean of Q, that is



False Discovery Rate      6

X X X(Q) œ  V V
V S R  œ , or

X X(Q) .œ  Number of false rejections
Number of rejections 

That is, FDR is the mean of the proportion of the falsely declared pairwise tests among

all pairwise tests declared significant.

As Benjamini, Hochberg, and Kling (1994) indicate, this error rate has a number

of important properties:

(a) If , then all m pairwise comparisons truly equal zero, and. . .1 2 Jœ œ â œ

therefore the FDR is equivalent to the familywise rate; that is, in the case of the complete

null being true, FDR control implies familywise control. Specifically, in the case of the

complete null hypothesis being true, S 0 and therefore V R. So, if  V 0, thenœ œ œ

Q 0, and if  V 0 then Q 1 and accordingly P(V 1) (Q).œ  œ œ X

(b) When m m, the FDR is smaller than or equal to the familywise rate of error.0 

Specifically, if V 1 then V/R 1, and if V 0 then V/R 0, and thus Ÿ œ œ

P(V 1) (Q). This indicates that if the familywise rate is controlled for a procedure,  X

than FDR is as well. Moreover, and most importantly for the purposes of this paper, if

one adopts a procedure which provides strong (i.e., over all possible mean

configurations) FDR control, rather than strong familywise control, then based on the

preceding relationship, a gain in power can be expected.

(c) V/R tends to be smaller when there are fewer pairs of equal means and when the

nonequal pairs are more divergent, resulting in a greater difference in FDR and the

familywise value and thus a greater likelihood of increased power by adopting FDR

control.

In addition, to these characteristics, Benjamini et al. (1994) provide a number of

illustrations where FDR control seems more reasonable than familywise or per
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comparison control. Exploratory research, for example, would be one area of application

for FDR control. That is, in new areas of inquiry where we are merely trying to see what

parameters might be important for the phenomenon under investigation, a few errors of

inference should be tolerable; thus, one can reasonably adopt the less stringent FDR

method of control which does not completely ignore the multiple testing problem, as does

per comparison control, and yet, provides greater sensitivity than familywise control.

Only at later stages in the development of our conceptual formulations does one need

more stringent familywise control. Another area where FDR control might be preferred

over familywise control, suggested by Benjamini and Hochberg (1995), would be when

two treatments (say, treatments for dyslexia) are being compared in multiple subgroups

(say, kids of different ages). In studies of this sort, where an overall decision regarding

the efficacy of the treatment is not of interest but, rather where separate recommendations

would be made within each subgroup, researchers likely should be willing to tolerate a

few errors of inference and accordingly would profit from adopting FDR rather than

familywise control.

To date, Benjamini and his collaborators (1994, 1995) have developed MCPs

providing FDR control for two simultaneous testing problems, for any number of linear

contrasts and for all pairwise contrasts. For both adaptations, they provide empirical

verification that the FDRs were less than the desired .05 value for all configurations of

means investigated and that the probabilities of detecting true differences were greater

with an FDR critical value than with a familywise value. Specifically, in the pairwise

multiple comparison problem, they have shown that FDR control results in greater

sensitivity to detect true pairwise differences as compared to adopting a familywise

Bonferroni critical value [i.e., Hochberg's (1988) step-up procedure] to test for pairwise

significance.

As promising as the Benjamini et al. (1994) findings are, they may not be strong

enough to warrant a switch to FDR control in the pairwise multiple comparison problem.
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That is, applied researchers have available to them many MCPs that can be applied to

pairwise comparisons other than Bonferroni type procedures investigated by Benjamini et

al., and they may provide as much or more power to detect nonnull pairwise differences

as the FDR method does. Furthermore, the Benjamini et al. study compared the two

procedures when data were obtained from populations having equivalent variability;

accordingly, they used Student's two independent sample -test when examining thet

pairwise comparisons. In the behavioral sciences, however, population variances are

rarely equal (see Keselman, Huberty, Lix, Olejnik, Cribbie, Donahue, Kowalchuk,

Lowman, Petoskey, Keselman, and Levin, in press Wilcox, Charlin, & Thompson,; 

1986). Therefore, the purpose of our investigation was to compare the Benjamini et al.

(1994) approach for testing pairwise comparisons with other popular methods for their

Type I error and power rates with statistics that do not assume variance homogeneity.

The question we will examine is: Can the FDR procedure for examining pairwise

comparisons, when coupled with a heteroscedastic statistic, provide acceptable Type I

error control when population variances are unequal, and, if so, does FDR control

provide sufficiently superior power, compared to relatively powerful familywise MCPs,

to warrant a switch to FDR control?

Pairwise MCPs

The Benjamini et al. (1994) procedure for pairwise comparisons, which is based

on FDR control, was compared to the methods due to Hochberg (1988),  Shaffer (1986),

Hayter (1986), and Welsch (1977a, 1977b).  These stepwise familywise MCPs were1

chosen since they have been shown to be somewhat more powerful procedures relative to

other simultaneous methods, such as Tukey's HSD (1953), and because they are

relatively easy to compute (see Keselman, 1994; Ramsey 1981, 1993; Seaman, Levin, &

Serlin, 1991).

Benjamini and Hochberg's (1995) FDR Pairwise Procedure.  In this procedure,

the p-values corresponding to the m pairwise statistics for testing the hypotheses H ,   1 á
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, H  are ordered from smallest to largest, i.e., p p ,   , p , wherem 1 2 mŸ Ÿ á Ÿ

m J(J 1)/2.  Let k be the largest value of i for which p , then reject all H ,œ  Ÿi i
i
m!

i 1,  2,  , k. According to this procedure one begins by assessing the largest p-value,œ á

p , proceeding to smaller p-values as long as p . Testing stops when p .m i k Ÿi k
m m! !

Hochberg's (1988) Sequentially Acceptive Step-Up Bonferroni Procedure. In this

procedure, the p-values corresponding to the m statistics for testing the hypotheses H , 1

á  , H  are also ordered from smallest to largest. Then, for any i m, m 1,   , 1, ifm œ  á

p /(m i 1), the Hochberg procedure rejects all H  (i i). According to thisi iŸ   Ÿ! w
w

procedure, therefore, one begins by assessing the largest p-value, p . If p , allm m Ÿ !

hypotheses are rejected.  If p , then H  is accepted and one proceeds to comparem m !

p  to /2.  If p /2, then all H  (i m 1 ,   , 1) are rejected; if not, then(m 1) (m 1) i ! !Ÿ œ  á

H  is accepted and one proceeds to compare p  with /3, and so on.(m 1) (m 2)  !

Shaffer's (1986) Sequentially Rejective Bonferroni Procedure that begins with an

omnibus test. Like the preceding procedures, the p-values associated with the test

statistics are rank ordered. In Shaffer's  procedure, however, one begins by comparing the

smallest p-value, p , to /m. If p /m, statistical testing stops and all pairwise1 1! !

contrast hypotheses (H , 1 i m) are retained; on the other hand if p /m, H  isi 1 1Ÿ Ÿ Ÿ !

rejected and one proceeds to test the remaining hypotheses in a similar step-down fashion

by comparing the associated p-values to /m , where m  is equal to the maximum! * *

number of true null hypotheses, given the number of hypotheses rejected at previous

steps.  Appropriate denominators for each -stage test for designs containing up to ten!

treatment levels can be found in Shaffer's Table 2.

Shaffer (1986) proposed a modification to her sequentially rejective Bonferroni

procedure which involves beginning this procedure with an omnibus test. [Though MCPs

that begin with an omnibus test frequently are presented with the F test, other omnibus

tests (e.g., a range statistic) can also be applied to these MCPs; in our investigation we

use the omnibus Welch (1951) test.] If the omnibus test is declared nonsignificant,
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statistical testing stops and all pairwise differences are declared nonsignificant. On the

other hand, if one rejects the omnibus null hypothesis one proceeds to test pairwise

contrasts using the sequentially rejective Bonferroni procedure previously described,

with the exception that p , the smallest p-value, is compared to a significance levelm

which reflects the information conveyed by the rejection of the omnibus null hypothesis.

For example, for m 6, rejection of the omnibus null hypothesis implies at least oneœ

inequality of means and, therefore, p  is compared to /3, rather than /6.6 ! !

Hayter's (1986) Two-Stage Procedure. This procedure begins with a test (Welch,

1951) of the omnibus hypothesis [H : , which if rejected, leads to theo . . .1 2 Jœ œ â œ ]

stage two tests of the pairwise contrasts using a Studentized range critical value for J 1

means. If the omnibus hypothesis is not rejected, then all pairwise hypothese are retained.

Numerical Illustration

We illustrate the mechanics of the Benjamini and Hochberg (1995) MCP for

pairwise comparisons as well as its potential for power superiority in comparison to

standard methods such as the usual ( /m) and Hochberg (1988) Bonferroni methods of!

familywise control, with the data set presented by Toothaker (1991, p. 72). Toothaker

selected this example from Miller (1981, p. 82) since it provides a good illustration of

power differences between pairwise MCPs. The data set is from a  J 5 one-way designœ

where the five group means and variances equal X 16.1, X 17.0, X 20.7,
_ _ _

1 2 3œ œ œ

X 21.1, and X 26.5, and s 7.2044, s 7.2004, s 7.2023, s 7.1943, and
_ _

4 5 1 2 3 4
2 2 2 2œ œ œ œ œ œ

s 7.1985, respectively, and sample sizes are all equal to five.  Table 2 contains the5
2 2œ

values of the contrasts, the standard errors of the contrasts, the values of  (defined in thet

next section), the df for the tests, the p-values, and the Bonferroni, Hochberg and FDR

critical constants.

Statistical significance according to the standard Bonferroni procedure is

determined by comparing the observed p-values to .05/10, while with the Hochberg

procedure the critical constant is .05/(11 i). Thus, according to the Bonferroni
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procedures, group 5 differs from both groups 1 and 2 (5-2, 5-1). On the other hand,

adopting FDR control, the largest p-value that is less than or equal to its critical constant

is  p ; accordingly, one can reject H  as well as H , H , H , H , and H . That is, referring6 6 5 4 3 2 1

to Table 2, group 5 differs from groups 1, 2, 3, and 4 (5-4, 5-3, 5-2, 5-1), and group 1

differs from groups 3 and 4 (4-1, 3-1). Thus, with FDR control, four additional contrasts

are declared significant.

Test Statistics

In our investigation of the MCPs, the omnibus and pairwise tests were computed

with Welch's (1938, 1951) nonpooled statistics. We chose to investigate these statistics

since, as indicated in the introduction, the data obtained in psychological experiments

frequently does not conform to the homogeneity of variance assumption. Furthermore,

prior research indicates that the power to detect effects is not substantially reduced when

using these statistics compared to the usual omnibus (ANOVA  test) and pairwise testF

(Student's two-sample ) statistics when the homogeneity assumption is satisfied (Brownt

& Forsythe, 1974; Dijkstra & Werter, 1981; Tomarkin & Serlin, 1986; Wilcox et al.

1986). Thus, there is much to recommend in uniformly adopting a nonpooled testing

approach to data analysis (see Lix & Keselman, 1995). Therefore, since we also believe

that uniform adoption of the nonpooled statistic in the multiple comparison problem is

advantageous, we apply it uniformly in our simulated conditions, that is, even when

group sizes and variances are equal.

In our work we assume a one-way model where n  independent randomj

observations X , X  ,  , X  (i 1 ,  , n ) were sampled from population j1j 2j n j jÞÞÞ œ áj

(j 1 ,  , J). Furthermore, we assume that the X s are obtained from a population withœ ÞÞÞ ij

mean  and unknown variance , with  (j j ). For this model, let. 5 5 5j j j j
2 2 Á Áw

# w

X X /n  and s (X X ) /(n 1), where X  is the estimate of  and s  is the
_ _ _

j i ij j i ij j j j jj j
2 2 2œ œ  D D .
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usual unbiased estimate of the variance for population j. The omnibus test can be

expressed as

F œ

!
!

j 1

J
j j

2

j 1

J
œ

œ

w X X J 1
_ _

1  

Ð  Ñ ÎÐ  Ñ


2 J 2
J 12

1 w Wj 2

n 1j
Ð  Ñ

Ð  Ñ

Ð  Î Ñ



 (1)

where w n s X w X /W, and W w The test statistic is approximately
_ _

j j j j j
2
j

j 1 j 1

J J
œ Î ß œ œ! !

œ œ

. 

distributed as an F variate and is referred to the critical value F[(1 ); (J 1), ], the ! /

(1 )-centile of the F distribution, where error degrees of freedom (df) are obtained !

from

/ œ
J 1

3

2

j 1

J


!
œ

(1 w /W)j 2

n 1j





 . (2)

Numerical results can be obtained from JMP (Sall & Lehman, 1996).

The pairwise tests can also obviously be obtained with the statistic given in

Equation (1), but we present the two-sample version since researchers are more likely to

be familar with it. The Welch (1938) two-sample statistic is

> œ
X
_

X  ( )
_

j jj  j  w w. .

Ë sj j
2

n nj

s2

j
 + 

w

w

 , 3Ð Ñ

where error df are obtained from
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/ œ

Œ sj j
2

n nj

s2

j

2

(s /nj j
2

j j2

n 1 n 1j

(s /n )2 2

j

 + 

  

w

w

Ñ

 

w w

w


. (4)

Methods

In the simulation study six variables were manipulated: (a) the number of levels

of the independent variable/the number of pairwise tests in the family, (b) the total

sample size, (c) the degree of sample size imbalance, (d) the degree of variance

inequality, (e) the pairing of group sizes and variances, and (f) the configuration of

population means.

Since Type I error control and power to detect nonnull pairwise differences could

be related to the number of comparisons in the family of pairwise tests, we chose, like

Seaman et al. (1991), to investigate J 3, 4, and 5 one-way layouts; for these designsœ

there are 3, 6, and 10 pairwise comparisons, respectively.

For each case of  J we varied total sample size (N). Specifically, the group sizes

(n, when equal) across each value of J were set at either n 10, n 15, or n 19.  Forœ œ œ

the nonnull mean configurations these sample sizes result in an  theoreticala priori

omnibus test (ANOVA F) power of .60, .80, and .90, respectively (assuming equal s)5j
2

(see Seaman et al., 1991).

We also varied sample size balance/imbalance. According to a recent survey of

the educational and psychological literatures for papers published in 1995-6, unbalanced

designs are the norm, not the exception (Keselman, Huberty, Lix, Olejnik, Cribbie,

Donahue, Kowalchuk, Lowman, Petoskey, Keselman, and Levin (in press). Furthermore,

since the effects of variance heterogeneity are exacerbated by sample size imbalance, we

included three cases of balance/imbalance for each layout investigated. In particular,

sample sizes were either equal, moderately unequal, or very unequal, where the degree of
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balance/imbalance was quantified with a coefficient of sample size variation (SCV); SCV

is defined as ( (n n) /J) / n , where n  is the average group size. When sample sizesDj
2

j 
q q q"

#

were equal SCV 0; the moderately unequal cases had values of SCV .10, whileœ ¶

SCV .40 for the largest case of imbalance investigated. Keselman et al. report that¶

SCV .40 values, or greater, are common. Sample sizes and values of SCV are¶

enumerated in Table 3 for each case of J.

We also considered variance equality/inequality, having again three cases which

were also quantified by a coefficient of (variance) variation (VCV). Across the three

layouts, VCV 0 when the variances were equal, and VCV .50 and VCV .60,œ ¶ ¶

respectively, for our cases of moderate and more than moderate inequality. The degrees

of variance heterogeneity were based on results reported by Keselman et al. (in press).

According, to their survey, it is not uncommon in behavioral science investigations for

unequal variances to have values of VCV .50. Our largest case of heterogeneity¶

represents a worst case scenario, though other investigators believe such inequality does

occur with some frequency (see Wilcox, 1994). Variances and values of VCV are

enumerated in Table 4 for each case of J.

When variances were unequal, they were both positively and negatively paired

with the group sizes. For positive (negative) pairings, the group having the fewest

(greatest) number of observations was associated with the population having the smallest

variance, while the group having the greatest (fewest) number of observations was

associated with the population having the largest variance. These conditions were chosen

since they typically produce conservative and liberal results, respectively.

The last variable manipulated was the configuration of means. Here also we used

the values investigated by Seaman et al. (1991) (their Table 3). Two definitions of power

were used in this investigation: (a) the average per-pair power rate, where per-pair power

is the probability of detecting a true pairwise difference, and (b) the all-pairs power rate,
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or the probability of detecting all true pairwise differences. The any-pairs power rate, or

the probability of detecting at least one true pairwise difference was not collected since

we agree with Ramsey (1978) and Keselman (1994) in that if determining  trueany

difference is of importance, as would be the case in say exploratory research, then this is

not really an area where a MCP would be best; an omnibus test and its overall power is

likely to be more suited to this type of research endeavor.

To generate pseudo-random normal variates, we used the SAS generator

RANNOR (SAS Institute, 1989). If Z  is a standard normal variate, thenij

X Z  is a normal variate with mean equal to  and variance equal to .ij j j ij j j
2œ  ‚. 5 . 5

Our simulation program was written in SAS/IML (SAS, 1989) code. Five thousand or

more replications of each condition were performed using a .05 criterion for each of the

procedures investigated.3

Results

Our initial analysis of the data examined whether any of the MCPs did not

consistently maintain their rates of Type I error close to the nominal 5% value. That is,

since the focus of our study was to compare the power of the MCPs, we did not want to

include in the power comparison phase of the investigation any procedure whose rates of

error were inflated. Not only do these inflated rates indicate the exact conditions of our

simulation in which a procedure breaks down but, as well, are suggestive of the

vulnerability of the procedure to other degrees of assumption violations not investigated

but which possibly could be encountered by psychological researchers. This preliminary

analysis indicated, as previously noted, that only Welsch's (1977a) procedure could not

consistently maintain Type I error control; on occasion, its rates of Type I error

substantially exceeded  5% (e.g., 12.59%). Accordingly, the Welsch procedure was not

included in the power phase of our investigation.
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Type I error rates. The pattern of Type I error rates for the remaining MCPs were

generally well controlled and consistent across the cases of J and N and therefore we only

present the rates for J 5 (collapsing over N). In particular, Figures 1 and 2 containœ

empirical percentages of Type I error for the complete null (one case) and partial null

cases (an average rate over the 10 partial nulls), respectively. In the remainder of the

paper, including figures and tables, we use the following abbreviations when referring to

the four MCPs: (a) Benjamini and Hochberg (1995)-BH, (b) Hochberg (1988)-H, (c)

Hayter (1986)-HR, and (d) Shaffer (1986)-S.

As indicated, the points plotted in Figures 1 and 2 show that the MCPs can

maintain their rates of error close to the nominal 5% value over the cases of variance

heterogeneity and sample size imbalance investigated.

Power rates4. Since rates of Type I error were well controlled in the complete and

partial null cases across the values of J, we enumerate average per-pair power rates for

the MCPs in Table 5. The all-pairs power rates were similar in pattern to the average per-

pair rates and therefore are not tabled. Since experimenters are not likely to know the

population state of affairs with regard to degree of heterogeneity, effect size and mean

configuration, deriving recommendations based upon specific combinations of these

factors is of little use. Accordingly, Table 5 contain power rates which have been

averaged over the nonnull mean configurations and cases of VCV and SCV. he most T

powerful MCP in each of the investigated conditions, enumerated in Table 5, is indicated

with underlining.

The average per-pair rates suggest that the MCPs have similar sensitivity to detect

pairwise mean differences. Nonetheless, it is also clear that the relative advantage of the

most powerful procedure to the others is related to design size, that is, to the number of

pairwise comparisons in the family of computed tests. Specifically, for the smallest of the

designs investigated, the S/HR MCPs are uniformly most powerful. However, as the
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number of tests in the family of pairwise comparisons increased, that is, as the design size

increased, the BH procedure generally became the most powerful MCP. That is, for the

J 4 and J 5 designs, BH was most powerful in three and eight of the nine conditionsœ œ

investigated, respectively. The reader should also note that though power differences are

not large, they are average per-pair differences, and as Seaman et al. (1991) note, “When

the number of comparisons being studied becomes large, the probability increases that a

given comparison will be declared significant by one procedure but not by another." (p.

583)

Discussion

Four stepwise MCPs (Hochberg, 1988; Hayter, 1986; Shaffer, 1986; Welsch,

1977a, 1977b), which provide familywise Type I error control for a set of pairwise

comparisons, were compared to the Benjamini and Hochberg (1995) procedure, a

procedure which sets neither familywise nor comparisonwise control, but rather sets a

false discovery rate of error, for their rates of Type I error and power to detect nonnull

pairwise differences. Nonpooled Welch (1938, 1951) statistics were used with the MCPs

in order to determine their operating characteristics in balanced/imbalanced one-way

layouts when population variances were either equal or unequal.

Results indicate that, with the exception of Welsch's (1977a) procedure, all MCPs

were able to maintain reasonably accurate control over Type I errors over all conditions

investigated. Though the Benjamini and Hochberg (1995) procedure was uniformly more

powerful than Hochberg's (1988) Bonferroni procedure (an expected finding given the

results reported by Benjamini et al.), it was not consistently the most powerful of the

procedures investigated. That is, when the number of tests in the family of pairwise

comparisons was small, that is six or less, Hayter's (1986) two-stage procedure was

typically most powerful. However, when the number of pairwise tests exceeded six, the

Benjamini and Hochberg (1995) procedure was typically most powerful.
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Our results suggest that as the number of pairwise comparisons in the family of

tests increases, the Benjamini and Hochberg (1995) FDR approach loses less power in

comparison to other pairwise MCPs based on familywise control, and thus it is a

relatively more powerful approach to examining pairwise comparisons than its

competitors. That is, it appears that compared to familywise controlling MCPs, the FDR

approach suffers less of a power loss as the number of tests in the family increases, a

desirable feature for those who decry the insensitivity of familywise controlling

procedures. To verify this finding we again compared the power rates (average per-pair

and all-pairs) of the MCPs, however, we increased the family size of the pairwise

comparison tests to 28 by increasing the design size to J 8 . The average per-pair rates,œ 5

averaging over 12 nonnull mean configurations, for the BH and HR MCPs were 8.5%

and 7.2%, respectively, when n 10. When n 15 and 19, the rates were 18.2% andœ œ

12.5% and 26.6% and 18.3%, respectively. The relative differences [(BH HR)/HR] for

the preceding are .18, .46 and .45, respectively. The all-pairs rates followed a similar

pattern.  It is also important to note that for each of the configurations investigated, the

BH average per-pair power value was larger than the HR value and on occassion was

greater by at least .14. Thus, as predicted, FDR always had greater sensitivity to detect

nonnull pairwise differences.

Based on our findings and those reported in the literature we make the following

recommendations for testing pairwise comparisons: for J 3, Fisher (1935); for J 4,œ œ

Hayter (1986); for J 5, Benjamini and Hochberg (1995).
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Footnotes

1. The Welsch (1977a) procedure on occasion resulted in very liberal rates of Type I

error (e.g., >12%) and therefore was not included in the power phase of our study;

consequently, to save space, we do not define the procedure here (See Welsch or

Keselman, 1994 for a description of the procedure.)

2. The numerical example is intended to demonstrate the use of the FDR MCP and

therefore we were not concerned with the values of the sample sizes and variances,

though in our computations we still use the Welch (1938) nonpooled statistic.

3. In order to ensure accurate estimation of the FDR, we required that there be 5000

simulations in which R 0 (Remember (Q) is defined to be zero when R 0); œX

accordingly, the familywise MCPs' rates were based on considerably more than 5000

simulations.

4. For J 3, S and HR are equivalent and are in fact equivalent to Fisher's (1935) Twoœ

Stage Least Significant Difference MCP. When J 3 Fisher's test provides accurateœ

familywise control when assumptions are satisfied (see Levin, Serlin & Seaman, 1994).

5. For J 8, after confirming Type I error control, we investigated 12 patterns of nonullœ

configurations that were similar to those reported by Seaman et al. (1991). In addition,

for each pattern, sample size per group was again set at 10, 15, and 19; additionally, we

only investigated the equal n /equal  condition.j j
25
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Figure Captions

Figure 1.  J 5 Empirical Type I Error Rates (Complete Null Hypothesis)œ

Figure 2.  J 5 Empirical Type I Error Rates (Averaged Over All Partial Nullœ

Hypotheses)
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Table 1. Number of Errors Committed when Testing m Null Hypotheses

Declared 
Non-

Significant

Declared
 Significant

Total

True Null Hypotheses U V m0

Non-true Null Hypotheses T S m!m0

m!R R m

Note: From “Controlling the False Discrovery Rate: A Practical and Powerful
Approach to Multiple Testing,” by Y. Benjamini and Y. Hochberg, (1995), Journal
of the Royal Statistical Society, Series B, 57, p. 289-300. Copyright 1995 by The
Royal Statistical Society. Adapted with permission. R is an observable random
variable, while U, V, S, and T are unobservable random variables.



Table 2. Critical constants for Various Multiple Comparison Procedures

Contrast 1 vs 5 2 vs 5 3 vs 5 4 vs 5 1 vs 4 1 vs 3 2 vs 4 2 vs 3 1 vs 2 3 vs 4

Value 10.4 9.5 5.8 5.4 5.0 4.6 4.1 3.7 0.9 0.4

S. Error 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70

t 6.13 5.60 3.42 3.18 2.95 2.71 2.42 2.18 0.53 0.24

df 8 8 8 8 8 8 8 8 8 8

p-value .000 .001 .009 .013 .019 .027 .042 .061 .610 .820

index i 1 2 3 4 5 6 7 8 9 10

B .005 .005 .005 .005 .005 .005 .005 .005 .005 .005

H .005 .0056 .0063 .0071 .0081 .0100 .0125 .0167 .0250 .0500

FDR .0050 .0100 .0150 .0200 .0250 .0300 .0350 .0400 .0450 .0500

Note: B stands for Bonferroni, H stands for Hochberg’s (1988) step-up Bonferroni procedure, and FDR stands for
Benjamini and Hochberg’s (1994) False Discovery Rate of Type I Error. 



Table 3. Sample Sizes and Coefficients of Sample Size Variation (SCV)

J N Sample Sizes SCV

3 30 10, 10, 10 0

9, 10, 11 .082

5, 10, 15 .408

45 15, 15, 15 0

13, 15, 17 .109

7, 15, 23 .436

57 19, 19, 19 0

17, 19, 21 .086

9, 19, 29 .430

4 40 10, 10, 10, 10 0

9, 10, 10, 11 .071

5, 7, 13, 15 .412

60 15, 15, 15, 15 0

13, 15, 15, 17 .094

7, 11, 19, 23 .422

76 19, 19, 19, 19 0

17, 19, 19, 21 .074

9, 14, 24, 29 .416

5 50 10, 10, 10, 10, 10 0



9, 10, 10, 10, 11 .063

5, 6, 10, 14, 15 .405

75 15, 15, 15, 15, 15 0

13, 14, 15, 16, 17 .094

7, 9, 15, 21, 23 .422

95 19, 19, 19, 19, 19 0

17, 18, 19, 20, 21 .074

9, 11, 19, 27, 29 .426



Table 4. Variances and Coefficients of Variance Variation (VCV)

J Population Variances VCV

3 1, 1, 1 0

1, 2, 4 .535

1, 4, 8 .662

4 1, 1, 1, 1 0

1, 2, 4, 4 .472

1, 3, 5, 8 .608

5 1, 1, 1, 1, 1 0

1, 1, 2, 3, 4 .530

1, 2, 4, 6, 8 .610



Table 5. Per-Pair Power Percentages Averaged Across Nonnull Configurations 

J N Condition BH HG SR HR

3 30 =nj or =E j 23.9 22.0 26.5 26.5

PP 11.5 10.4 12.8 12.8

NP 11.2 10.3 13.4 13.4

45 =nj or =E j 36.5 34.3 39.8 39.8

PP 18.3 16.7 20.2 20.2

NP 17.5 16.3 21.2 21.2

57 =nj or =E j 44.9 42.8 48.0 48.0

PP 23.8 22.0 26.0 26.0

NP 23.0 22.0 27.6 27.6

4 40 =nj or =E j 16.7 13.1 15.8 16.9

PP 6.7 5.1 6.4 7.0

NP 6.7 5.4 6.9 7.6

60 =nj or =E j 28.0 22.8 26.2 27.6

PP 11.5 8.9 10.9 11.6

NP 11.0 8.8 11.3 12.3

76 =nj or =E j 36.4 30.5 33.8 35.3

PP 15.6 12.3 14.7 15.6

NP 15.0 12.2 15.4 16.5

5 50 =nj or =E j 12.0 8.1 9.6 11.1

PP 4.8 3.3 4.0 4.6

NP 5.4 3.8 4.6 5.5



75 =nj or =E j 21.4 15.0 17.1 18.9

PP 8.9 5.9 7.0 8.0

NP 10.0 6.5 7.8 9.0

95 =nj or =E j 28.7 20.1 23.1 25.0

PP 12.4 8.4 9.9 11.0

NP 12.6 9.1 10.8 12.1

Note: =nj or =E j: Equal sample sizes or equal variances; PP(NP): Positive
(Negative)pairings of sample sizes and variances. Underlined values indicate
the MCP with the largest empirical power value. 




