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Abstract 

Some researchers in psychology have ordinarily relied on traditional linear models when 

assessing the relationship between predictor(s) and a continuous outcome, even when the 

assumptions of the traditional model (e.g., normality, homoscedasticity) are not satisfied. Of 

those who abandon the traditional linear model, some opt for robust versions of the ANOVA and 

regression statistics that usually focus on relationships for the typical or average case instead of 

trying to model relationships for the full range of relevant cases. Generalized linear models, on 

the other hand, model the relationships among variables using all available and relevant data and 

can be appropriate under certain conditions of non-normality and heteroscedasticity. In this 

paper, we summarize the advantages and limitations of using generalized linear models with 

continuous outcomes and provide two simplified examples that highlight the methodology 

involved in selecting, comparing, and interpreting models for positively skewed outcomes and 

certain heteroscedastic relationships. 

Keywords: generalized linear model, robust statistics, heteroscedasticity, skewness, continuous 

outcomes  
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Modeling Continuous Nonnormal Clinical Outcomes: 

The Generalized Linear Model Approach 

 Analysis of variance (ANOVA) and regression are commonly adopted methods for 

assessing the relationships between a continuous outcome and a categorical or continuous 

predictor, respectively. Both ANOVA and regression fall under the umbrella of the general linear 

model (GLM). An important limitation of the GLM is that statistical inference is only valid when 

errors are normally distributed and when variability is constant across the levels of the predictors 

(Fox, 2008). However, it is well known that skewed and heteroscedastic data are common in 

clinical psychology (Keselman et al., 1998). For example, non-negative data in psychology may 

be distributed with positive skewness and heteroscedasticity (e.g., Blanca et al., 2013; Grissim, 

2000; Lindeberg et al., 2008), and variability that is proportional to the level of the outcome has 

been reported in clinical research, such as with depression scores (Mall et al., 2014; Sayer et al., 

1993). Analyzing such data using methods that require the classical assumptions of normality 

and homoscedasticity would yield the consequence that estimates are less valid for statistical 

inference. 

  For analyzing such skewed outcomes that are potentially heteroscedastic, two popular 

approaches include use of robust statistics or of the GLM following transformations of the 

outcome variable. However, robust methods are usually only practical for simple designs (e.g., 

few covariates) and often ‘discard’ data that are potentially informative of the construct. For 

example, application of trimmed mean estimators to general population depression data (which 

are often positively skewed because of the presence of a few extreme cases) remove the extreme 

scores and thus focus on prediction based on the bulk of the data. However, one may consider 

whether the goals of the study are consistent with an approach that removes the less common, 
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though potentially relevant, cases. Transformations of the outcome can sometimes restore 

normality and homoscedasticity, though care is required in interpreting the coefficients. For 

example, in using log transformations, a naive back-transformation of estimated coefficients 

would lead to interpretive issues for the response in original scale (Manning, 1998). If one 

prioritized generalizability, then the trimmed mean inference is unsuitable. If one desired 

inference in original scale because the inference in transformed scale lacks interpretability, then 

transformations are also unsuitable.  

An alternative method that allows for inference to the population mean is the generalized 

linear model (GzLM, Nelder & Wedderburn, 1972), an extension of the GLM. All hypotheses 

that can be tested under the GLM can be tested under the GzLM. The GLM requires that errors 

approximate normality and homoscedasticity, but the GzLM does not. The GzLM also requires 

statistical assumptions, but the variety of statistical assumptions that data may conform to allows 

for considerable flexibility.  

Therefore, we seek to recommend that researchers more frequently consider the GzLM as 

an alternative for analyzing continuous outcomes when the assumptions of GLMs (ANOVAs, 

regressions) are violated. Since the popularization of the GzLM in 1972, psychology has lagged 

somewhat in the frequency of its use. Although it is not uncommon for psychologists to correctly 

use the GzLM for categorical responses (i.e., logistic and Poisson regressions), it is uncommon 

to see the GzLM considered for continuous outcomes. In this paper, we briefly review the 

alternative approaches of robust statistics and transformations, present a non-technical 

introduction to the GzLM approach, and provide two simple, applied examples that utilize the 

GzLM on continuous outcomes. Because we consider the GzLM as an alternative to even the 

most basic designs like the ANOVA, the applied examples highlight considerations for model 
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comparison, selection, and diagnostics in modeling skewed continuous outcomes against single 

predictors, when the single predictor is either categorical or continuous.  

Popular Approaches for Dealing with Assumption Violations 

Robust Statistics. Although there are numerous procedures that fall under the category 

of robust alternatives for regression and ANOVA, we introduce only a few that have been shown 

to have adequate statistical properties while preserving and/or improving power. Cribbie, 

Fiksenbaum, Wilcox and Keselman (2012), Grissim (2000), Rosopa, Schaffer and Schroeder 

(2013), Wilcox and Keselman (2011), among others, discuss regression and ANOVA 

alternatives for modeling heteroscedastic relationships, including weighted least squares, the 

Theil-Sen estimator, and the Welch (1938) adjusted degrees of freedom procedure. Although 

weighted least squares and the original Welch procedure are not robust to violations of normality 

(Cribbie et al., 2012, Sohn & Kim, 1997), the Theil-Sen estimator, i.e., the median of the 

slopes for all possible sample (x,y) points, and the Welch test with trimmed means and 

Winsorized variances or ranked data, provide good alternatives for regression and ANOVA, 

respectively, when both homoscedasticity and normality assumptions are violated (Cribbie et al., 

2012). In substantive applications, such methods have since gained favour; skewed distributions 

for Beck Depression Inventory scores have been examined using the modified Theil-Sen 

estimator (Clewett, Bachman, & Mather, 2014) for reducing sensitivity to outliers, and other 

analyses in psychobiology, cannabis use, and depression have used the trimmed mean estimator 

to recover statistical power when classical assumptions were violated (Barnwell, Earleywine, & 

Wilcox, 2006; Denson & Earleywine, 2006; Wilcox, Granger, Szanton, & Clark, 2014).  

Although the Welch test with trimmed means and Winsorized variances and ranked data 

procedures retain necessary statistical properties and has been extended beyond ANOVA-type 
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designs (e.g., Welsh, 1987), there are certain limitations. Parameters from the Theil-Sen 

procedure, for example, are difficult to interpret in multiple predictor models (e.g., Wang, Dang, 

Peng, & Zhang, 2009); as a median-based procedure, it incorporates only the middle points into 

the analysis. Similarly, the oft recommended 20% symmetrical trimmed mean (Erceg-Hurn & 

Mirosevich, 2008; Keselman, Wilcox, Othman, & Fradette, 2002), though representative of the 

majority of data values, yields confidence intervals that generalize to only 60% of the sampled 

population (Bonett & Price, 2002). This loss of validity can be considered critical when the 

variables of interest are indeed skewed at the population level, such as depression, risk 

behaviours, and reaction times. It seems sensible to suggest that the persistent presence of 

extreme scores in such samples are theoretically and meaningful important for the response of 

interest; for analysis then, it would be ideal to include all potentially relevant data by making 

inferences to the population of interest. 

GLM following transformations of the outcome. Typically introduced as a technique 

to normalize skewness, transformations can also have the effect of stabilizing variance, such that 

the relationship between the outcome and set of predictors is linearized. Once data are 

transformed, the researcher would proceed with the general linear model. When the variance 

changes with the mean by some power relationship (e.g., changes in the variance are 

proportional to changes in the mean squared) for a strictly positive variable, for example, the 

Box-Cox transformation class of power transformations may be implemented (Osborne, 2010).  

Of these transformations, the log and square root transformations are well known and commonly 

conducted, such as with alcohol use (Neal & Simons, 2007), depression and automatic thoughts 

(Cui, Shi, & Oei, 2013; Pirbaglou et al., 2013), and reaction times (Klein Entink, van der Linden, 

& Fox, 2009).  
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 However, several issues arise with transformations, including interpretation of scale and 

the requirement for the simultaneous correction of both skew and heteroscedasticity. With 

transformations, inferences are also made in transformed scale (e.g., a unit increase in x predicts 

a 0.52 log unit change in y), but their interpretations might not be particularly meaningful. If one 

desires inference to the mean, then back-transformed estimates would require an adjustment. 

Though adjustments have been calculated in the health econometric literature (Duan, 1983; 

Manning, 1998), such adjustments have never gained prominence in psychology.  More 

importantly, even though some transformation may indeed provide a full correction, the full and 

simultaneous correction for both skew and heteroscedasticity is not always guaranteed. Given the 

premise that one is interested in modeling, ideally, an outcome's distribution without exclusion of 

less typical responses, the concept of transforming each value is still appealing. We now discuss 

the GzLM structure and discuss how it adopts the concept of transformation.  

 

Generalized Linear Modeling 

Model Structure and Specification  

 As an extension of the GLM, the GzLM relaxes the assumption that the residuals be 

normally distributed and homoscedastic. Distributions that could be specified for continuous 

responses include the Gaussian, gamma, and inverse-Gaussian (Nelder & Wedderburn, 1972), all 

from the exponential family of probability distributions. Specification of any of these 

exponential distributions implies that assumptions are made about the error distribution and the 

relation between the mean and variance (Nelder & Wedderburn, 1972). The mean-variance 

relation is described with the variance function (see Table 1). For example, a Gaussian 

distribution, implies that the variance is unrelated to the mean (i.e., the assumption of 
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homoscedasticity); with the gamma distribution, which models positively skewed, non-negative 

data, the variances are expected to be proportional to the square of the means. In this latter case, 

the gamma distribution implies a certain form of heteroscedasticity but not homoscedasticity.

 The GzLM is further specified by the link function, given as  

η=g(µ), 

where µ denotes expected values, η denotes values in transformed scale, and g(µ) represents that 

transformation of expected values. When the link function is correctly specified, the relation 

between the outcome and the set of predictors is linearized. Further, the GzLM allows for this 

transformation to be specified separately from the outcome's distribution (Fox, 2008), 

highlighting the flexibility of exploring various link functions for the same distribution. Table 1 

shows the link functions most commonly used with each distribution, the ‘canonical links’. 

Although these are the most commonly used, one can easily alter the choice of the link function. 

For example, with a specification for the gamma family, one might explore the efficacy of either 

a log or an inverse transformation for obtaining linearity. Because η are values given some 

function on µ, the inverse function can also be obtained; that is, one may invert g(μ) to obtain 

g(μ)-1, the mean function. This is valuable for directly obtaining the expected value in original 

scale.  Thus, the transformation of the expected value, and not of the outcome itself, provides the 

additional advantage of interpreting the model's estimates in the outcome's original scale 

(Blough, Madden, & Hornbrook, 1999).  

 Thus, the GzLM has three primary components: 1) a structural component, specifying the 

linear combination of predictors (e.g., β0 + β1X, where β0 represents the population intercept 

[Y|X=0], β1 represents the change in η, which is a function of the expected value of Y, for a unit 

change in X, and X represents the predictor of interest); 2) a random component, specified by 
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some distribution family, which assumes some mean-variance relationship in the error 

distribution, conditional on the predictors in the model; and 3) a link function that transforms the 

expected value of the response, such that the mean value of Y is related to the structural 

component (i.e., the linear combination of predictors). As well, the link function has the 

corresponding inverse link function.  

Taken together, model specification involves specification for the family distribution and 

for the link function. The choice of the family distribution is based on properties of the chosen 

probability distribution (e.g., the gamma distribution might be chosen for data that are positive 

and that exhibit the implied mean-variance relation). The choice of the link function may be 

more nuanced, involving both statistical and substantive considerations. Statistically, different 

link functions can affect the performance of models, as indicated by differences in model fit and 

residual deviance (detailed later). Substantively, fitted values should be meaningful --- they 

should remain within reasonable bounds for the response and ideally allows for interpretation. 

For example, the inverse link can be very useful for reaction time data because the inverse 

transformation on reaction time may be interpreted as reaction speed.      

Evaluating the Parameters of the Model 

 Unlike the sums of squares calculations through ordinary least squares, GzLMs are fit 

using maximum likelihood (ML) estimation. ML estimation uses an iterative approach to 

determine estimates for population parameter values (i.e., estimates of the slopes, standard 

errors, etc.) that maximize the likelihood that the sample data came from a population with these 

parameter values (for more detail about estimation, see Coxe, West & Aiken, 2013). 

 The contribution of the predictors can be evaluated by comparing nested models with the 

log-likelihood test and/or by testing individual coefficients with Wald tests. A log-likelihood (or 
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likelihood ratio) test compares the fit of a model with the parameter of interest to that of a 

reduced model without the parameter of interest, whereas a Wald test determines whether some 

individual coefficient is significantly different from zero. If the parameter contributes to the 

prediction of the outcome, then the likelihood ratio would be large (favoring the model with the 

parameter of interest), and the Wald test statistic would also be large. As expected, a p-value can 

be calculated for both of these tests.  The p-value on the log-likelihood ratio test reflects whether 

the change in model fit is statistically significant; the p-value on the Wald test reflects whether 

the individual coefficient is significantly different from zero. Both indicate the value of adding 

some predictor. Generally, log-likelihood tests are recommended with non-normal and/or 

heteroscedastic distributions, with F-based tests more appropriate with estimated dispersion 

parameters (e.g., gamma) and chi-square based tests more appropriate with fixed dispersion 

parameters (e.g., Poisson) (Venables & Ripley, 2002). 

Model Fit and Model Comparison 

 An important part of all GzLMs is to determine whether the specified model provides an 

acceptable fit to the data. Methods for assessing model fit can include residual analyses, 

diagnostic tests, and information criterion fit statistics. Although the GLM’s ordinary fit statistic, 

R2, is not used in the GzLM, there is some literature on pseudo- R2 values for generalized linear 

models, [e.g., Mittlböck & Heinzl, 2002], but their use is controversial. Certainly, the estimates 

obtained from models are already effect sizes. Generally, model fit focuses on the deviance. The 

deviance can be thought of as roughly similar to the residual sums of squares in regression, and 

represents the degree of lack of fit relative to a saturated model where a separate parameter is 

estimated for each case (i.e., the saturated model can perfectly reproduce the sample data, see 

Long, 1997). The deviance is composed of deviance residuals, which represent the individual 
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contribution of each case to the overall deviance and which play an important role in determining 

the fit of a GzLM.  

Deviance residuals are useful for analysis of model residuals for continuous responses. A 

normal probability plot of the deviance residuals allows for an assessment of substantive 

departures from normality. For continuous responses, the deviance residuals should be roughly 

normal if the distribution is appropriately selected. A plot of the deviance residuals against 

predicted values allows for visual detection of potential non-linearity and unequal error 

variances. Such a plot show roughly equal variability in the deviance residuals across the levels 

of the predictor.   

 Other diagnostics are available for determining whether a model is misspecified in either 

the family or the link function, though there is no single test that identifies the ‘correct’ model. 

The Pregibon (1980) goodness-of-link test has been used in the econometric literature to test for 

nonlinearity. More specifically, the Pregibon tests uses the predicted values and squared 

predicted values in a second model predicting the outcome; if there is no significant non-linearity 

that is detected, then the coefficient for the squared predicted value should not be significant. 

The modified Hosmer-Lemeshow (MHL; Hosmer & Lemeshow, 1995) test is an alternative for 

assessing the goodness-of-link. The MHL test conducts an ANOVA on the mean of the residuals 

for each decile of the predictor; a nonsignificant test statistic provides no evidence that the 

residuals are unevenly dispersed across the levels of the fitted values. Pearson’s correlation 

assesses systematic bias in fit by correlating the raw residuals on the outcome with the predictor; 

again, a nonsignificant test statistic provides no evidence of a poorly fitting model because there 

is no evidence that the residuals are related to the value of predictor. Results in Manning, Basu & 

Mullahy (2005) provide some evidence that these tools are effective at identifying ill-fitting 
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models. For models that include only a single categorical predictor, we explain later that these 

diagnostics are not as readily applied. Further, it should be noted that these aforementioned 

statistics are merely tools and that their results are only guidelines, not strict criteria.  

 In lieu of hypothesis tests for diagnostics, fit statistics are available. Information-theoretic 

approaches, such as Akaike’s Information Criterion (AIC, Akaike, 1974), bias-corrected AIC 

(AIC-C; Hurvich & Tsai, 1989), and Bayesian Information Criterion (BIC, Schwartz, 1978), are 

relative fit statistics that are useful for comparing nested and non-nested models. The AIC has 

been suggested for discriminating among sets of candidate error distributions (Dick, 2004). Dick 

(2004) generated data from lognormal, gamma, Weibull, log-logistic, and inverse-Gaussian 

processes, and GzLMs for those distributions were fit to each data set; there, AIC, as a criterion 

for distributional selection (he did not investigate AIC-C or BIC), seemed to be effective at 

identifying the correct data-generating distribution, particularly with higher samples sizes. In 

application, the AIC may have limited utility for identifying the ‘true’ data generating 

mechanism, but the AIC is effective for selecting the best choice among models under 

consideration (Dick, 2004).  The AIC-C is a modified statistic that is less likely to select an over-

parameterized model than AIC, and BIC provides a stricter penalty for estimating more 

coefficients in a model (i.e., both AIC-C and BIC correct for the AIC’s bias towards more 

complicated models). By themselves, the statistics are meaningless; these statistics are used only 

for the comparison of multiple models. Models with lower values of information criteria relative 

to others are models that support the data better. 

 

Simple Empirical Examples using GzLMs 

Continuous Predictor. Arpin-Cribbie et al. (2012) conducted a study exploring perfectionism 
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and its correlates in a group of 87 university students with elevated maladaptive perfectionism. 

Suppose that one hypothesizes that socially-prescribed perfectionism (SPP) predicts variability in 

negative automatic thoughts (NAT). SPP is a type of perfectionism that develops due to 

expectations from significant others and was measured using the Multidimensional Perfectionism 

Scale (Hewitt & Flett, 1991). NAT are negative thoughts or images that arise spontaneously and 

occur more often in those with maladaptive perfectionism (Nylund, 2004) and were measured 

using the Automatic Thoughts Questionnaire (ATQ; Hollon & Kendall, 1980). Scores represent 

the perceived frequency of NAT and are computed as a sum of 30 Likert-type items with anchors 

of “1 – not at all” to “5 – all the time”. With sum scores that range from 30 to 150, NATs are 

regularly treated as continuous.   

 The distribution of NATs, as described in previous literature (e.g., Gibb, Benas, Crossett 

& Uhrlass, 2007; Pirbaglou et al., 2013), typically has a long right tail. Figure 1 displays a 

scatterplot of the relationship between NAT and SPP, as well as a histogram displaying the 

distribution of NAT scores. It appears that NAT and SPP are related, and the distribution of NAT 

scores is indeed positively skewed. The variability is also related to the level of the predictor; if 

we split SPP into tertiles, the variability of the first, second and third tertiles are 449.39, 598.75 

and 624.63, respectively. Because the NAT variable may be treated as continuous and because 

there is evidence that variability systematically increases across levels of the predictors, the 

gamma family is a possibility.  

In this example, we explore the following models: 1) gamma distribution with a log link; 

2) gamma distribution with an inverse link; 3) Gaussian (normal) distribution with a log link 

(this should not be confused with the ordinary linear model with transformation of the raw 

outcome, as opposed to the expected values); and 4) a Gaussian distribution with an identity link 
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(equivalent to a simple linear regression ) to highlight a model that would be expected to fit very 

poorly. [Note: One could explore other models that allow for positive skewness and 

heteroscedasticity, such as the inverse-Gaussian distribution. However, upon testing, this yielded 

very poor fit because the observed nature of the heteroscedasticity did not match the 

heteroscedasticity implied by their structures; that is, the hypothesized mean-variance 

relationship [variance proportional to mean cubed] for the inverse-Gaussian distribution was too 

extreme for the observed data and was therefore not selected for presentation].   

 Figure 2 displays a normal probability plot of the deviance residuals. Residuals that lie 

close to the diagonal line on the plot indicate less departure from normality. Table 3 summarizes 

the Pregibon, MHL, and correlation results, as well as the AIC, AIC-C, and BIC values. As 

expected, the models with Gaussian distributions did not fit as well because the distribution of 

residuals is positively skewed. The gamma distribution with the inverse link function fit the data 

best because it yielded the lower information criteria values. However, this model also failed the 

Pregibon test.  

Here, there is a disagreement between fit criteria and diagnostic tests. Certainly, 

hypothesis tests for diagnostic tests are subject to the limitations of significance testing. Thus, 

although residual diagnostics, tests, and information criteria all provide some information about 

model fit, the choice of model is not pure statistical. When disagreement in fit statistics does 

occur in practice, theoretical considerations should play a strong role in model selection. In this 

case, we selected the model with log link. Previous studies had used log transformations on the 

raw response for inferences about the geometric mean; the log link in this case provides some 

comparability while also providing the alternative inference to the arithmetic mean. Figure 3 

displays the deviance residuals against the predicted values for the gamma (log link) model, 
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which allows for an assessment for heteroscedasticity. There is no obvious evidence of 

heteroscedasticity. 

 The likelihood ratio test indicated that SPP significantly predicts NAT score, b = .011, F 

(1, 81) = 19.97, p < .001. For interpretation in original scale, recall that the model has the log 

link function. To predict NAT scores in the original scale, we use the inverse function, which 

inverts the model equation. The mean function corresponding to the log link involves 

exponentiation; therefore, we exponentiate the fitted model. With an intercept of 3.64, we write 

the prediction equation as NAT' = exp(3.64 + .011*SPP) = exp(3.64)*exp(.011*SPP) = 

37.91*exp(.011*SPP). Higher levels of SPP are associated with higher levels of predicted NAT 

levels. For example, someone at the mean level of SPP (66.24) has a predicted NAT value of 

37.91*exp(.011*66.24) =  78.94, whereas someone one standard deviation below the mean 

(52.35) has a predicted value of 37.91*exp(.011*52.35) =  67.75, and someone with a value one 

standard deviation above the mean (80.13) has a predicted value of 37.91*exp(.011*80.13) =  

91.97. Figure 4 displays a scatterplot of the raw SPP and NAT scores, along with the fitted line 

from the significant Gamma model with a log link. 

Categorical Predictor. Arpin-Cribbie et al. (2012) also compared the effects of three different 

interventions (cognitive behavioral therapy [CBT], stress reduction therapy [SRT], and a no 

treatment option [NT]) for students with elevated maladaptive perfectionism levels. Students 

were randomly assigned to one of the interventions. For this example, we focus on the post-test 

NAT (NATP). Figure 5 displays density plots of scores in each of the treatment conditions 

following the intervention. The positive skewness of NATP scores is evident for each of the 

treatment groups. Because we will model only a single categorical predictor, the distribution of 

group scores also correspond to the distribution of group residuals. For descriptive purposes, 
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gamma density curves are overlaid on these histograms to show how the group distributions 

approximate gamma shapes.  The means of the CBT, SRT, and NT groups are 57.17 (20% 

trimmed mean = 53.61, SD = 20.13), 69.62 (20% trimmed mean = 65.26, SD = 31.13), and 83.88 

(20% trimmed mean = 81.88, SD = 25.66), respectively. Dummy variables were created with the 

CBT group as the reference group. Consistent with the earlier gamma models, the CBT group, 

which has the lowest mean, also has lower variability than the two groups.  

 We explore the same models as in the continuous predictor example, namely: 1) a 

Gamma distribution with a log link; and 2) a Gamma distribution with an inverse link; 3) a 

normal model with a log link; and 4) a normal (Gaussian) distribution with an identity link. A 

normal probability plot of the deviance residuals (Figure 6) indicates that the model with 

Gaussian distributions do not fit as well as the gamma distributions. The Gamma models 

(log/inverse link) had the lowest AIC, AIC-C and BIC value (765.67, 766.18 and 775.35, 

respectively). The Gaussian models (781.27, 781.78, and 790.94 for AIC, AIC-C and BIC, 

respectively) did not fit nearly as well. Note here that all Gamma models had the same fit 

statistics and deviance statistics, regardless of the link function; the same can be said for the 

Gaussian models. This implies that the use of deviance residuals, GOF tests and information 

criteria is less relevant for the comparison of models that have the same single categorical 

predictor. Whereas one would observe different fit statistics between two models of single 

continuous predictors with the same family but different link function (e.g., gamma with log link 

versus gamma with inverse link), one would observe identical fit statistics between two models 

of single categorical predictors, given the same family specification.  Further, regardless of the 

link function and family specification, the predicted values for each group, in original scale, 

would be identical across models (by maximum likelihood, predicted values for each category 
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are the groups’ sample means). In other words, for a GzLM alternative to the one-way ANOVA 

case, one would only need to inspect residuals for assessing the family specification.  

For these data, we select the gamma distribution with the inverse link for a different 

model interpretation, such that the inverse of negative automatic thoughts may be considered the 

lack of negative symptoms. Figure 7 displays the spread of the residuals by the predicted values 

for each group. We can see that there is slightly greater variability in the residuals for those in 

the STR group, likely a function of the variances not being proportional to the squared means 

(e.g., for the dummy variable comparing the CBT group to the STR group, the squared means for 

the STR group are about 1.5 times that for the CBT group, while the variances are more than 

twice as large in the STR group; thus, the larger residual variability is not surprising).  

 A likelihood ratio test for the gamma distribution with an inverse link provided evidence 

for a significant difference between the groups, F (2, 80) = 6.97, p=.002. (the two degrees of 

freedom reflect that the difference is two parameters, i.e., the two dummy variables). Further, it 

was also found that those receiving CBT (predicted value = 57.17) had significantly lower NATP 

than those receiving either the STR (predicted value = 69.62), t (80) = 2.009, p = .0492, b = 

-.003, CI.95 = [-.0062, -.0001] or the NT options (predicted value = 83.88), t (80) = 3.717, p 

= .0004, b = -.006, CI.95 = [-.0086, -.0026]. Because the intercept for this model was .017, we can 

write the prediction equation as NATP' = 1/(.017 - .003*SRT - .006*NT). Notice that although 

the sign of the slopes are negative, we are working with the inverse; so, being in either the STR 

or NT groups is predictive of higher NATP scores. As an example, we can reproduce the 

predicted value for the CBT group from above via NATP' = 1/(.017 - .003*SRT - .006*NT) = 

1/(.017 - .003*0 - .006*0) = 57.17. It should be further noted that maximum likelihood estimates 

for each group (or levels of the predictor) are statistically unbiased. For the case of the single-
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categorical predictor, predictions in original scale for all models with the same family 

specification are equal to sample means by maximum likelihood estimation (i.e., predicted 

values are equal for gamma models with either the log or inverse link). Comparing across models 

with different families, inferential tests as obtained by the gamma models are more valid than 

those obtained in models with a poorer family specification (e.g., Gaussian models). Thus, for 

the one-way case, the appropriateness of the family specification is more important for obtaining 

better precision and better confidence in the results of inferential tests.   

 

Summary and Conclusion 

 Researchers in psychology are often confronted with continuous outcomes that are 

distributed with positive skewness and variances that relate to the level of the predictor. Of those 

who prefer the use of alternative methods over mere reliance on the robustness of traditional 

models, most transform the outcome variable to try to achieve normality and/or homoscedasticity 

while others use some robust statistic. However, transformations do not always simultaneously 

normalize distributions and stabilize variances; further, when inference to means is of interest, 

the naïve back-transformation of coefficients is insufficient for recovering expected means. 

Trimmed mean estimators are also limited in that they often make use of a limited amount of 

information from the full distribution of relevant observations.  

The GzLM offers certain advantages over these alternatives. Firstly, the separate 

specifications for the distribution and link function offers flexibility for achieving linearity, 

whilst raw data transformations require simultaneous corrections. Secondly, the link function and 

its inverse function allows for interpretation in both transformed scale and in original scale, 

while power transformations could have less clear interpretations in transformed scale. Thirdly, 
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when distribution tails are of interest, the GzLM allows for the specification of distributions that 

explicitly model non-normality, while trimmed mean estimators typically trim away the more 

extreme cases; in other words, the GzLM offers estimator sufficiency while trimmed mean 

estimators do not. Fourthly, when strict statistical assumptions are met, parametric procedures 

are most powerful, and the modeling framework can provide richer interpretations. Finally, the 

GzLM framework allows for a variety of research designs with any number of predictors while 

trimmed mean estimators may currently be applied only to a limited number of designs (e.g., 

factorial designs). While the GzLM accommodates any number of potential predictors, the 

GzLM, as an overarching framework that encompasses the general linear model, is also suitable 

for simple designs. Even with a single predictors, it may be advantageous to implement the 

GzLM in place of regular linear regressions and one-way ANOVAs when it may be appropriate.  

 Although we have highlighted the advantages of interpretation in original scale and of 

GzLM estimator sufficiency, and though we advocate for researchers to consider the GzLM a 

potential avenue of analysis, even for designs with a single-grouping variable, we are not 

suggesting that the GzLM is a panacea that will be applicable for all possible scenarios in which 

skewness and heteroscedasticity occurs. Indeed, model misspecification, as with other modeling 

procedures, is a resounding problem when the observed residual structure does not well match 

the theoretical error structure; for example, if the observed variances are independent of the 

means, then it would not be logical to specify a gamma distribution just because one observes a 

positively skewed distribution.  Indeed, the statistical assumptions pertain to error structure, not 

the distribution of the response variable itself. Further, the choices in model selection may 

sometimes be unclear, as formal diagnostic tests and fit statistics may disagree, particularly 

because diagnostic tests are also subject to potential issues with Type I error and power.  It 
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would be important for researchers to use all available statistical tools alongside theoretical 

consideration for model selection.  

When the GzLM for continuous outcomes clearly does not fit well, then there are 

alternatives besides the less appropriate traditional methods. If one desires to follow a route that 

encompasses modeling, one could consider extensions of the GzLM. One could ‘customize’ 

one’s own link function in the GzLM by either incorporating Box-Cox power transformations or 

other transformations that might induce linearity; or, one might go beyond the GzLM into other 

frameworks, such as the generalized gamma model (Manning, Basu, & Mullahy, 2005) or the 

generalized additive models (Hastie & Tibshirani, 1986). If, instead, there is little desire for 

model-based procedures and if one considers the cost of generalizability to be justified, then 

trimmed mean estimators could be used instead.  

Overall, GzLMs can be a valuable alternative to traditional linear models and robust 

methods. We recommend that applied researchers add the GzLM to their statistical toolboxes and 

to be aware of situations where GzLMs might be a better tool than traditional approaches for 

modeling continuous outcomes.   
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Table 1 

Common family specifications and corresponding variance and link functions for positively 

skewed distributions 

 Distribution Variance Function Canonical Link 

 
Gaussian Constant Identity 

 
Poisson µi Log 

 
Gamma µi

2 Inverse 

 
Inverse-Gaussian µi

3 Inverse-square 
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Table 2 

Common link functions and their corresponding mean functions 

 

Link Name Link Function, η=g(µi) Mean Function, µ = g-1(ηi) 

 

Identity µi ηi 

 

Log logeµi e(ηi) 

 

Inverse µi
-1 ηi

-1 

 

Inverse-square µi
-2 ηi

-1/2 

 

Square-root √µi  ηi
2 
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Table 3 

Fit statistics for the four models assessing the relationship between Negative Automatic 

Thoughts (ANT) and Socially Prescribed Perfectionism (SPP) 

Model AIC 

 

AIC-C BIC Pregibon MHL Corr 

Gamma (log) 758.16 758.46 765.41 

 

pass pass pass 

Gamma (inverse) 756.94 757.24 764.20 

 

fail pass pass 

Gaussian (log) 761.84 762.15 769.10 

 

fail pass pass 

Gaussian (identity) 763.87 764.18 771.13 

 

fail pass pass 

 

Note: AIC = Akaike Information Criteria; AIC-C = bias-adjusted AIC; BIC = Bayesian 

Information Criteria; Pregibon = Pregibon link test; MHL = modified Hosmer-Lemeshow 

goodness of fit test; Corr = Pearson's correlation test between the raw residuals and the values of 

the predictor. Bolded texts indicate lowest values for the information criteria value; italicized text 

indicates values that are within two points of the lowest information criteria value. 
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Figure 1. a) Scatterplot of the positive relationship between Negative Automatic Thoughts 

(NAT) and Socially-Prescribed Perfectionism (SPP). b) Histogram of NAT scores demonstrating 

nonnegative, positively skewed values. 
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Figure 2. Normal probability plot of the standardized deviance residuals for the distributions 

(link functions) modeling the relationship between Negative Automatic Thoughts (NAT) and 

Socially Prescribed Perfectionism (SPP), using models 
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Figure 3. Plot of the standardized deviance residuals against the predicted values for Negative 

Automatic Thoughts (NAT) 
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Figure 4. Scatterplot of the relationship between Negative Automatic Thoughts (NAT) and 

Socially Prescribed Perfectionism (SPP), along with the fit line for the gamma distribution with a 

log link 
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Figure 5. Histograms of the post-test Negative Automatic Thoughts (NATP) scores for each of 

the Cognitive Behavioral Therapy (CBT), Stress Reduction Therapy (SRT) and Control groups. 

The red line is the fit line for the gamma distribution.  
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Figure 6. Normal probability plot of the standardized deviance residuals for the distributions 

(link functions) modeling the relationship between post-test Negative Automatic Thoughts 

(NATP) and the treatment groups, using competing models 
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Figure 7. Ordered deviance residuals for each of treatment groups for the gamma model with an 

inverse link function 


