
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=hcap20

Download by: [York University Libraries] Date: 07 June 2017, At: 07:19

Journal of Clinical Child & Adolescent Psychology

ISSN: 1537-4416 (Print) 1537-4424 (Online) Journal homepage: http://www.tandfonline.com/loi/hcap20

Pairwise Multiple Comparison Test Procedures:
An Update for Clinical Child and Adolescent
Psychologists

H. J. Keselman , Robert A. Cribbie & Burt Holland

To cite this article: H. J. Keselman , Robert A. Cribbie & Burt Holland (2004) Pairwise Multiple
Comparison Test Procedures: An Update for Clinical Child and Adolescent Psychologists, Journal
of Clinical Child & Adolescent Psychology, 33:3, 623-645, DOI: 10.1207/s15374424jccp3303_19

To link to this article:  http://dx.doi.org/10.1207/s15374424jccp3303_19

Published online: 07 Jun 2010.

Submit your article to this journal 

Article views: 88

View related articles 

Citing articles: 7 View citing articles 

http://www.tandfonline.com/action/journalInformation?journalCode=hcap20
http://www.tandfonline.com/loi/hcap20
http://www.tandfonline.com/action/showCitFormats?doi=10.1207/s15374424jccp3303_19
http://dx.doi.org/10.1207/s15374424jccp3303_19
http://www.tandfonline.com/action/authorSubmission?journalCode=hcap20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=hcap20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1207/s15374424jccp3303_19
http://www.tandfonline.com/doi/mlt/10.1207/s15374424jccp3303_19
http://www.tandfonline.com/doi/citedby/10.1207/s15374424jccp3303_19#tabModule
http://www.tandfonline.com/doi/citedby/10.1207/s15374424jccp3303_19#tabModule


METHODOLOGICAL ARTICLE

Pairwise Multiple Comparison Test Procedures:
An Update for Clinical Child and Adolescent Psychologists

H. J. Keselman
University of Manitoba

Robert A. Cribbie
York University

Burt Holland
Temple University

Locating pairwise differences among treatment groups is a common practice of ap-
plied researchers. Articles published in this journal have addressed the issue of statis-
tical inference within the context of an analysis of variance (ANOVA) framework, de-
scribing procedures for comparing means, among other issues. In particular, 1 article
(Jaccard & Guilamo-Ramos, 2002b) presented some new methods of performing con-
trasts of means whereas another presented a framework for obtaining robust tests
within this same context (Jaccard & Guilamo-Ramos, 2002a). The purpose of this ar-
ticle is to add to these contributions by presenting some newer methods for conduct-
ing pairwise comparisons of means, that is by extending the contributions of the first
article and applying the framework of the second article to pairwise multiple compar-
isons. The newer methods are intended to provide additional sensitivity to detect
treatment group differences and provide tests that are robust to the effects of variance
heterogeneity, nonnormality, or both.

As noted by Jaccard and Guilamo-Ramos (2002a,
2002b) and Wilcox (2002), researchers conducting stud-
ies related to children and adolescents in clinical psy-
chology are often interested in comparing the means of
several treatment conditions
on a specific dependent measure. When each treatment
group mean is compared with every other group mean,
the tests are designated pairwise comparisons. Pairwise
comparisons among treatment group means provide fo-
cusedquestions instudiessuchas those thatcompare the
(a) social functioning and number of childhood behav-
ior problems of attention deficit hyperactivity disor-

der–high inattentiveness, attention deficit hyperactivity
disorder–low inattentiveness, and nondiagnosed con-
trol children (Carlson & Mann, 2002); (b) depression,
anxiety, and a number of cognitive distortions of inter-
nalizing only, externalizing only, internalizing and ex-
ternalizing, and control (no internalizing or external-
izing) children (Epkins, 2000); (c) parental distress and
parental coping of parents of children with attention defi-
cit hyperactivity disorder–inattentive, attention deficit
hyperactivity disorder–combined (inattentive and hyper-
active), and nondiagnosed control children (Podolski &
Nigg, 2001); (d) teacher-rated amount of aggressive–dis-
ruptive behavior of children labeled low cognitive abil-
ity-elevated inattention, elevated inattention only, low
cognitive ability only, or control (no problems) (Bellanti
& Bierman, 2000); and (e) parenting stress, depression,
and satisfaction and perceptions of child behavior of cus-
todial grandparents seeking outpatient psychological
services for their 3- to 12-year-old grandchildren; custo-
dial grandparents not seeking any psychological services
for their grandchildren; maternal parents seeking out-
patient psychological services for their children (Daly &
Glenwick, 2000), to illustrate but a few exemplars.
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When computing all pairwise comparisons, the re-
searcher must consider various issues (these issues per-
tain to other classes of multiple tests as well), including
(a) the multiplicity effect of examining many tests of
significance, (b) the selection of an appropriate level of
significance (α), and (c) the selection of an appropriate
multiple comparison procedure. The goals of the re-
search should guide these decisions. Researchers faced
with these decisions have often settled on “traditional”
choices (e.g., familywise error (FWE) control, α = .05,
and Tukey’s [1953] method, respectively). Indeed, a
recent survey of the statistical practices of educational
and psychological researchers indicates that of the
many multiple comparison procedures that are avail-
able, the Tukey and Scheffé (1959) methods are most
preferred (Keselman, Huberty, et al., 1998).

With respect to the selection of a multiple compari-
son procedure, the researcher must be aware that his or
her choice can often significantly affect the results of
the experiment. For example, many multiple compari-
son procedures (e.g., those that are based on traditional
test statistics) are inappropriate (and may lead to incor-
rect decisions) when assumptions of the test statistics
are not met (e.g., normality, variance homogeneity).
Furthermore, several multiple comparison procedures
have recently been proposed that, according to pub-
lished results or statistical theory, significantly im-
prove on the properties (e.g., power) of existing proce-
dures while still maintaining the specified error rate at
or below α (see Wilcox, 2003).

Therefore, the goal of this article is to describe some
of the newer multiple comparison procedures within
the context of one-way completely randomized de-
signs when validity assumptions are satisfied, as well
as when the assumptions are not satisfied. That is, the
goal is to help popularize newer procedures, proce-
dures that should provide researchers with more robust
and more powerful tests of their pairwise comparison
null hypotheses. We also discuss the generalization of
procedures to factorial designs.

It is also important to note that the multiple compar-
ison procedures that are presented in this article were
selected for discussion, by and large, because research-
ers can, in most cases, obtain numerical results with a
statistical package, in particular, through the SAS
(1999) system of computer programs. The SAS system
(see Westfall, Tobias, Rom, Wolfinger, & Hochberg,
1999) presents a comprehensive, up-to-date array of
multiple comparison procedures. It should be noted
that for many of the procedures we discuss, as well as
many that we do not discuss, numerical solutions can
be obtained from SPSS (see Norusis, 2002); we indi-
cate when this is the case. Accordingly, we acknowl-
edge at the beginning of our presentation that some of
the material we present follows closely Westfall et al.’s
presentation. This article, however, focuses on multi-
ple comparison procedures for examining all possible

pairwise comparisons between treatment group means.
We also present procedures that are not available
through the SAS system. In particular, we discuss a
number of procedures that we believe are either new
and interesting ways of examining pairwise compari-
sons (e.g., the model comparison approach of Dayton,
1998) or have been shown to be insensitive to the usual
assumptions associated with some of the procedures
discussed by Westfall et al. (e.g., multiple comparison
procedures based on robust estimators).

Type I Error Control

Researchers who test a hypothesis concerning mean
differences between two treatment groups are often
faced with the task of specifying a significance level, or
decision criterion, for determining whether the differ-
ence is significant. The level of significance specifies
the maximum probability of rejecting the null hypothe-
sis when it is true (i.e., committing a Type I error). As α
decreases, researchers can be more confident that re-
jection of the null hypothesis signifies a true difference
between population means, although the probability of
not detecting a false null hypothesis (i.e., a Type II
error) increases. Researchers faced with the difficult,
yet important, task of quantifying the relative impor-
tance of Type I and Type II errors have traditionally se-
lected some accepted level of significance, for example
α = .05.

However, determining how to control Type I errors
is much more difficult when multiple tests of signifi-
cance (e.g., all possible pairwise comparisons between
group means) are computed (see Jaccard & Guilamo-
Ramos, 2002a, 2002b). This is because when multiple
tests of significance are computed, how one chooses to
control Type I errors can affect whether one can con-
clude that effects are statistically significant. Choosing
among the various strategies that one can adopt to con-
trol Type I errors could be based on how one wishes to
deal with the multiplicity of testing issue.

The multiplicity problem in statistical inference re-
fers to selecting the statistically significant findings
from a large set of findings (tests) to either support or
refute one’s research hypotheses. Selecting the statisti-
cally significant findings from a larger pool of results
that also contain nonsignificant findings is problematic
because when multiple tests of significance are com-
puted, the probability that at least one will be signifi-
cant by chance alone increases with the number of tests
examined.

Discussions on how to deal with multiplicity of test-
ing have permeated many literatures for decades and
continue to this day. In one camp are those who believe
that the occurrence of any false positive must be
guarded at all costs (see Games, 1971; Ryan, 1960,
1962; Westfall & Young, 1993). That is, as promul-
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gated by Ryan, pursuing a false lead can result in the
waste of much time and expense and is an error of in-
ference that accordingly should be stringently con-
trolled. Those in this camp deal with the multiplicity
issue by setting α for the entire set of tests computed.

For example, in the pairwise multiple comparison
problem, Tukey’s (1953) multiple comparison proce-
dure uses a critical value wherein the probability of
making at least one Type I error in the set of pairwise
comparisons tests is equal to α. This type of control has
been referred to in the literature as experimentwise or
FWE control. These respective terms come from set-
ting a level of significance over all tests computed in an
experiment, hence experimentwise control, or setting
the level of significance over a set (family) of concep-
tually related tests, hence FWE control. Multiple
comparisonists seem to have settled on the familywise
label. Thus, in the remainder of the article, when we re-
fer to overall error control, we are referring to FWE. As
indicated, for the set of pairwise tests, Tukey’s proce-
dure sets a FWE for the family consisting of all
pairwise comparisons.

Those in the opposing camp maintain that stringent
Type I error control results in a loss of statistical power,
and, consequently, important treatment effects go un-
detected (see Rothman, 1990; Saville, 1990). Members
of this camp typically believe the error rate should be
set per comparison (the probability of rejecting a given
comparison, hereafter referred to as the compari-
sonwise error [CWE] rate) and usually recommend a
5% level of significance, allowing the overall error rate
(i.e., FWE) to inflate with the number of tests com-
puted. In effect, those who adopt comparisonwise con-
trol ignore the multiplicity issue.

For example, a researcher comparing four groups
may be interested in determining if there are signifi-
cant pairwise mean differences among any of the
groups. If the probability of committing a Type I error
is set at α for each comparison, then the probability
that at least one Type I error is committed over all
pairwise comparisons can be much higher than α. On
the other hand, if the probability of committing a Type
I error is set at α for the entire family of pairwise com-
parisons, then the probability of committing a Type I
error for each of the comparisons can be much lower
than α. Clearly, the conclusions of an experiment can
be greatly affected by the level of significance and the
family of inferences over which Type I error control is
imposed.

The FWE rate relates to a family (containing, in
general, say k elements) of comparisons. A family of
comparisons, as we indicated, refers to a set of concep-
tually related comparisons (e.g., all possible pairwise
comparisons, all possible complex comparisons, trend
comparisons, and so on). Specification of a family of
comparisons, self-defined by the researcher, can vary
depending on the research paradigm. For example, in

the context of a one-way design, numerous families
can be defined: a family of all comparisons performed
on the data, a family of all pairwise comparisons, a
family of all complex comparisons. (Readers should
keep in mind that if multiple families of comparisons
are defined [e.g., one for pairwise comparisons and one
for complex comparisons], then given that erroneous
conclusions can be reached within each family, the
overall Type I FWE rate will be a function of the multi-
ple subfamilywise rates.) Researchers may find helpful
the guidelines offered by Westfall and Young (1993, p.
220) for specification of a family; they include

• The questions asked form a natural and coherent
unit. For example, they all result from a single ex-
periment.

• All tests are considered simultaneously. For ex-
ample, when the results of a large study are sum-
marized for publication, all tests are considered
simultaneously. Usually, only a subset of the col-
lection is selected for display, but the entire col-
lection should constitute the “family” to avoid se-
lection effects.

• It is considered a priori probable that many or all
members of the “family” of null hypotheses are
in fact true.

Specifying family size is a very important compo-
nent of multiple testing. (In this article family size is all
possible pairwise comparisons.) As Westfall et al.
(1999) noted, differences in conclusions reached from
statistical analyses that control for multiplicity of test-
ing (FWE) and those that do not (CWE) are directly re-
lated to family size. That is, the larger the family size,
the less likely individual tests will be found to be statis-
tically significant with familywise control. Accord-
ingly, to achieve as much sensitivity as possible to de-
tect true differences and yet maintain control over
multiplicity effects, Westfall et al. recommended that
researchers “choose smaller, more focused families
rather than broad ones, and (to avoid cheating) that
such determination must be made a priori” (p. 10). Ac-
cordingly, we believe that unless the family of interest
is clear-cut and obvious, the analyst is obliged to jus-
tify the choice of family size. Definitions of the CWE
and FWE rates appear in many sources (e.g., Kirk,
1995; Toothaker, 1991; Tukey, 1953; see Appendix A
for error rate definitions).

Not only does the FWE rate depend on the number
of null hypotheses that are true but also on the distribu-
tional characteristics of the data and the correlations
among the test statistics. Because of this, an assortment
of multiple comparison procedures have been devel-
oped, each intended to provide FWE control.

In the past, controlling the FWE rate has been rec-
ommended by many researchers (e.g., Hancock &
Klockars, 1996; Ryan, 1962; Tukey, 1953). Indeed, ac-
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cording to Seaman, Levin, and Serlin (1991) it is “the
most commonly endorsed approach to accomplishing
Type I error control” (p. 577). Not surprisingly, there-
fore, Keselman, Huberty, et al. (1998) reported that ap-
proximately 85% of researchers conducting pairwise
comparisons adopt some form of FWE control. How-
ever, it would not surprise us that, particularly when
family size is large, the false discovery rate might pres-
ently be the preferred method of control (see below).

Although many multiple comparison procedures pur-
port to control FWE, some provide “strong” FWE con-
trol whereas others only provide “weak” FWE control.
Procedures are said to provide strong control if FWE is
maintained across all null hypotheses; that is, under the
complete null configuration and
allpossiblepartialnull configurations. (Anexampleofa
partial null hypothesis is .
Weak control, on the other hand, only provides protec-
tion for the complete null hypothesis, that is, not for all
partial null hypotheses as well.

The distinction between strong and weak FWE con-
trol is important because as Westfall et al. (1999)
noted, the two types of FWE control, in fact, control
different error rates. Weak control only controls the
Type I error rate for falsely rejecting the complete null
hypothesis and accordingly allows the rate to exceed,
say 5%, for the composite null hypotheses. On the
other hand, strong control sets the error rate at, say 5%,
for all (component) hypotheses. Examples of multiple
comparison procedures that only weakly control FWE
are the Newman (1939)–Keuls (1952) and Duncan
(1955) procedures.

False Discovery Rate Control

As indicated, several different error rates have been
proposed in the multiple comparison literature. The
majority of discussion in the literature has focused on
the FWE and CWE rates (e.g., Kirk, 1995; Ryan, 1960;
Toothaker, 1991; Tukey, 1953), although other error
rates, such as the false discovery rate, also have been
proposed (e.g., Benjamini & Hochberg, 1995). Work in
the area of multiple hypothesis testing is far from
static, and one of the newer interesting contributions to
this area is an alternative conceptualization for defin-
ing errors in the multiple testing problem; that is, the
false discovery rate, presented by Benjamini and
Hochberg. The false discovery rate is defined by these
authors as the expected proportion of the number of er-
roneous rejections to the total number of rejections
(see Appendix A for further details).

Benjamini and Hochberg (1995) provided a number
of illustrations in which false discovery rate control
seems more reasonable than familywise or com-
parisonwise control. Exploratory research, for exam-
ple, would be one area of application for false discov-
ery rate control. That is, in new areas of inquiry in

which one is merely trying to see what parameters
might be important for the phenomenon under investi-
gation, a few errors of inference should be tolerable;
thus, one can reasonably adopt the less stringent false
discovery rate method of control that does not com-
pletely ignore the multiple testing problem, as does
comparisonwise control, and yet provides greater sen-
sitivity than familywise control. Only at later stages in
the development of conceptual formulations does one
need more stringent familywise control. Another area
in which false discovery rate control might be pre-
ferred over familywise control, suggested by Benja-
mini and Hochberg, would be when two treatments
(say, treatments for dyslexia) are being compared in
multiple subgroups (say, children of different ages). In
studies of this sort, in which an overall decision regard-
ing the efficacy of the treatment is not of interest but
separate recommendations would be made within each
subgroup, researchers likely should be willing to toler-
ate a few errors of inference and accordingly would
profit from adopting the false discovery rate rather than
familywise control.

Recently, use of the false discovery rate criterion
has become widespread when making inferences in re-
search involving the human genome, where family
sizes in the thousands are common. See the review by
Dudoit, Shaffer, and Boldrick (2003) and the refer-
ences contained therein. Another area of research in
psychology where false discovery rate controlling
procedures have had a significant impact is functional
magnetic resonance imaging. In these experiments,
researchers conduct numerous (often more than
100,000) significance tests that relate to tests of activa-
tion on specific voxels (i.e., areas) within the brain
(e.g., Callan et al., 2003).

Because multiple testing with the false discovery
rate tends to detect more significant differences than
testing with FWE, some researchers may be tempted to
automatically prefer false discovery rate control to
FWE control. We caution that researchers who use the
false discovery rate should be obligated to explain, in
terms of the definitions of the two criteria, why it is
more appropriate to control the false discovery rate
than FWE in the context of their research.

Adjusted p Values

As indicated, FWE control is the rate of error con-
trol that is currently favored by researchers in most
social science contexts. In its typical application,
researchers compare a test statistic to a FWE critical
value. Another approach for assessing statistical
significance is with adjusted p values
(Westfall et al., 1999; Westfall & Young, 1993). As
Westfall and Young noted, “ is the smallest signifi-
cance level for which one still rejects a given hypothe-
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sis (Hc) in a family, given a particular (familywise)
controlling procedure” (p. 11). Thus, authors do not
need to look up (or determine) FWE critical values,
and, moreover, consumers of these findings can apply
their own assessment of statistical significance from
the adjusted p value rather than from the standard (i.e.,
FWE) significance level chosen by the experimenter.
The advantage of adjusted p values for multiple com-
parison procedures, as with p values for tests in
comparisonwise contexts, is that they are more infor-
mative than merely declaring retain or reject H0; they
are a measure of the weight of evidence for or against
the null hypothesis when controlling FWE—for exam-
ple, if the researcher or reader can conclude that the
test is statistically significant at the FWE = .10 level but
not at the FWE = .05 level (see Appendix A for an illus-
tration of computing adjusted p values). Adjusted p
values are provided by the SAS Institute (1999) system
for many popular multiple comparison procedures (see
Westfall et al., 1999).

Power

Just as the rate of Type I error control can be viewed
from varied perspectives when there are multiple tests
of significance, the power to detect nonnull hypotheses
also can be conceptualized in many ways. Over the
years, many different conceptualizations of power for
(pairwise) comparisons have appeared in the literature
(e.g., all-pairs, any pair, per-pair); our presentation,
however, is based on the work of Westfall et al. (1999).

According to Westfall et al. (1999), when multiple
tests of significance are (to be) examined, power can be
defined from four different perspectives: (a) complete
power, (b) minimal power, (c) individual power, and
(d) proportional power. The definitions they provide
are

• Complete Power—P (reject all Hcs that are false)
• Minimal Power—P (reject at least one Hc that is

false)
• Individual Power—P (reject a particular Hc that

is false)
• Proportional Power (average proportion of false

Hcs that are rejected).

Complete power is the probability of detecting all
nonnull hypotheses, a very desirable outcome though
very difficult to achieve, even in very well-controlled
and well-executed research designs. For example, as
Westfall et al. noted, if 10 independent tests of signifi-
cance each have individually a power of 0.8 to detect a
nonnull effect, the power to detect them all equals
(.8)10 = 0.107! Minimal power, on the other hand, is the
probability of detecting at least one nonnull hypothesis
and corresponds conceptually to the Type I FWE rate.

Individual power is the probability of detecting a par-
ticular nonnull hypothesis, with a multiple comparison
procedure critical value. Lastly, proportional power in-
dicates what proportion of false null hypotheses one is
likely to detect. We tend to prefer individual power be-
cause it focuses equally on all tests and most closely re-
sembles the notion of power when testing hypotheses
in isolation from one another.

Some newer power concepts have been developed
for use when testing with the false discovery rate crite-
rion. An example, due to Genovese and Wasserman
(2002), is the false nondiscovery rate. Define A to be
the number of accepted hypotheses and T the number
of accepted hypotheses that are false. Then the false
nondiscovery rate = E(T/A) if A > 0 and = 0 if A = 0.

Types of Multiple Comparison
Procedures

Multiple comparison procedures can examine pair-
wise hypotheses either simultaneously or sequentially.
A simultaneous multiple comparison procedure con-
ducts all comparisons regardless of whether the omni-
bus test, or any other comparison, is significant (or not
significant) using a constant critical value. Such proce-
dures are frequently referred to as simultaneous test
procedures (see Einot & Gabriel, 1975). A sequential
(stepwise) multiple comparison procedure considers
either the significance of the omnibus test or the signif-
icance of other comparisons (or both) in evaluating the
significance of a particular comparison; multiple criti-
cal values are used to assess statistical significance.
Multiple comparison procedures that require a signifi-
cant omnibus test to conduct pairwise comparisons
have been referred to as protected tests.

Multiple comparison procedures that consider the
significance of other comparisons when evaluating the
significance of a particular comparison can be either
step-down or step-up procedures. Step-down proce-
dures begin by testing the most extreme test statistic,
and nonsignificance of the most extreme test statistics
implies nonsignificance for less extreme test statistics.
Step-up procedures begin by testing the least extreme
test statistic, and significance of least extreme test sta-
tistic can imply significance for larger test statistics. In
the equal sample sizes case, if a smaller pairwise
difference is statistically significant, so is a larger pair-
wise difference, and conversely. However, in the un-
equal sample size case, one can have a smaller pairwise
difference be significant and a larger pairwise differ-
ence be nonsignificant if the sample sizes for the
means comprising the smaller difference are much
larger than the sample sizes for the means comprising
the larger difference.

One additional point regarding simultaneous testing
procedures and stepwise procedures is important to
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note. Simultaneous test procedures allow researchers
to examine simultaneous intervals around the statistics
of interest, whereas stepwise procedures do not (see,
however, Bofinger, Hayter, & Liu, 1993).

Test Statistics

This section presents test statistics that can be used
to assess the significance of pairwise comparisons.
Note, however, that other statistics can also be adopted
(see Appendix A). A hypothesis for the pairwise com-
parison , when group sizes (n1, n2)
are unequal, can be examined with the test statistic:

where is the jth group mean (j ≠ j′) and mean square
error is the usual analysis of variance (ANOVA) esti-
mate of error variance (see Appendix A for further de-
tails). Note that this is the usual two-sample Student t
test, distributed as a t variate with n1 + n2 – 2 df. When
group sizes are equal, the statistic (with 2[n – 1] df)
would be

Multiple Comparison Procedures
for Normally Distributed

Data/Homogeneous Population
Variances

Tukey

Tukey (1953) proposed a simultaneous test proce-
dure for all pairwise comparisons in what Toothaker
(1991) described as possibly “the most frequently cited
unpublished paper in the history of statistics” (p. 41).
Tukey’s multiple comparison procedure uses a critical
value obtained from the Studentized range distribution
q(α, J, ν), where q is a value from the Studentized
range distribution based on J means and ν degrees of
freedom (see Kirk, 1995). The procedure accounts for
dependencies (correlations) among the pairwise com-
parisons in deriving a simultaneous critical value. In
particular, statistical significance, with FWE control, is
assessed by comparing

Tukey’s procedure can be implemented in SAS’s
(1999) general linear model program (as well as SPSS
[Norusis, 2002]). It is also important to note that
Tukey’s method, as well as other multiple comparison
procedures, can be utilized when group sizes are un-
equal (see Appendix A). Westfall et al. (1999) enumer-
ated the general linear model syntax, with an accompa-
nying numerical example, to obtain adjusted p values
for Tukey’s test.

Recall that we defined various power rates in the
multiple comparison problem: complete power, mini-
mal power, individual power, and proportional power.
SAS software allows users to compute these values
(see Appendix A for details).

Fisher–Hayter

Fisher (1935) proposed conducting multiple t tests
on the C pairwise comparisons following rejection of
the omnibus ANOVA null hypothesis (see Keselman,
Games, & Rogan, 1979). The pairwise null hypotheses
are assessed for statistical significance by referring |tc|
to t(α/2, ν), where t(α/2, ν) is the upper 100(1 – α/2) per-
centile from Student’s distribution with parameter ν. If
the ANOVA F is nonsignificant, comparisons among
means are not conducted; that is, the pairwise hypothe-
ses are retained as null.

It should be noted that Fisher’s (1935) least signifi-
cant difference procedure only provides Type I error
protection via the level of significance associated with
the ANOVA null hypothesis, that is, the complete null
hypothesis. For other configurations of means not
specified under the ANOVA null hypothesis (e.g.,

all means but one equal
and in which the set of J – 1 equal means is quite dispa-
rate from the one mean), the rate of familywise Type I
error can be much in excess of the level of significance
(Hayter, 1986; Hochberg & Tamhane, 1987; Kesel-
man, Keselman, & Games, 1991).

Hayter (1986) proved that the maximum FWE
for all partitions of the means, which occurs when J –
1 of the means are equal and the remaining one
is very disparate from this group, is equal to

. One can see that for J > 3
the maximum FWE will exceed the level of signifi-
cance. In fact, Hayter showed that for ν = ∞, α = .05,
FWE attains values of .1222 and .9044 for J = 4 and J
= 8, respectively. Thus, this usual form of the least
significant difference procedure does not provide a
satisfactory two-stage procedure for researchers when
J > 3.

Accordingly, Hayter (1986) proposed a modifica-
tion to Fisher’s (1935) least significant difference pro-
cedure that would provide strong control over FWE.
Like the least significant difference procedure, no
comparisons are tested unless the omnibus test is sig-
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nificant. If the omnibus test is significant, then Hc is re-
jected if

Studentized range critical values can be obtained
through SASs PROBMC (see Westfall et al., 1999).

It should be noted that many authors recommend
Fisher’s (1935) two-stage test for pairwise compari-
sons when J = 3 (see Keselman, Cribbie, & Holland,
1999; Levin, Serlin, & Seaman, 1994). These recom-
mendations are based on Type I error control, power,
and ease of computation issues.

Procedures That Control the False
Discovery Rate

Benjamini and Hochberg

As previously indicated, Benjamini and Hochberg
(1995) proposed controlling the false discovery rate,
instead of the often conservative FWE or the often
liberal CWE. For false discovery rate control, the pc

values are ordered (smallest to largest) p1, …, pc, and
for any c = C, C – 1, …, 1, if pc ≤ α/(c/C), reject all
Hc′(c′ ≤ c).

The Benjamini and Hochberg (1995) procedure has
been shown to control the FDR for several situations of
dependent tests, that is, for a wide variety of mul-
tivariate distributions that make their procedure appli-
cable to most testing situations social scientists might
encounter (see Sarkar, 1998; Sarkar & Chang, 1997).
In addition, simulation studies comparing the power of
the Benjamini and Hochberg procedure to several
FWE controlling procedures have shown that as the
number of treatment groups increases (beyond J = 4),
the power advantage of their procedure over the FWE
controlling procedures becomes increasingly large
(Benjamini et al., 1994; Keselman et al., 1999). The
power of FWE controlling procedures is highly de-
pendent on the family size (i.e., number of compari-
sons), decreasing rapidly with larger families (Holland
& Cheung, 2002; Miller, 1981). Therefore, control of
the false discovery rate results in more power than
FWE controlling procedures in experiments with many
treatment groups, but yet provides more control over
Type I errors than CWE controlling procedures.

Statistical significance can be assessed once again
with adjusted p values (see Appendix A for details).
The MULTTEST program (SAS Institute, 1999) can
be used to obtain these adjusted p values (see Westfall
et al., 1999). Benjamini and Hochberg (2000) also pre-
sented a modified (adaptive) version of their original
procedure (see Appendix A for a description of this
modification).

Closed Testing Sequential Multiple
Comparison Procedures

As we indicated previously, researchers can adopt
stepwise procedures when examining all possible pair-
wise comparisons, and typically they provide greater
sensitivity to detect differences than do simultaneous
test procedures (e.g., Tukey’s [1953] method), while
still maintaining strong FWE control. In this section,
we present some theory and methods related to closed
testing sequential multiple comparison procedures that
can be obtained through the SAS system of programs
(see Appendix A for greater detail).

As Westfall et al. (1999) noted, it was during the
past two decades (prior to their 1999 publication) that a
unified approach to stepwise testing evolved. The uni-
fying concept has been the closure principle. Multiple
comparison procedures based on this principle have
been designated as closed testing procedures. The
closed testing principle has led to a way of performing
multiple tests of significance such that FWE is strongly
controlled with results that are coherent. A coherent
multiple comparison procedure is one that avoids in-
consistencies in that it will not reject a hypothesis that
is implied by a hypothesis that was not rejected. For ex-
ample, a procedure that retains the hypothesis µ1 = µ2

and µ3 = µ4 must also retain µ1 = µ2 and µ3 = µ4 (see
Appendix A for further details). Because closed testing
procedures were not always easy to derive, various au-
thors derived other simplified stepwise procedures that
are computationally simpler, though at the expense of
providing smaller α values than what theoretically
could be obtained with a closed testing procedure. Nat-
urally, as a consequence of having smaller α values
(i.e., Type I errors are being controlled too tightly),
these simpler stepwise multiple comparison proce-
dures would not be as powerful as exact closed testing
methods. Nonetheless, these methods are still typically
more powerful than simultaneous test procedures (e.g.,
Tukey) and therefore are recommended; furthermore,
researchers can obtain numerical results through the
SAS system.

One such stepwise method was introduced by Ryan
(1960), Einot and Gabriel (1975), and Welsch (1977)
and is available through SAS (Ryan–Einot–Gabriel–
Welsch [REGWQ]) as well as SPSS. One can better
understand the logic of their procedure if we first intro-
duce one of the most popular stepwise strategies for
examining pairwise differences between means, the
Newman–Keuls procedure.

In this procedure, the means are rank-ordered from
smallest to largest and the difference between the
smallest and largest means is first subjected to a statis-
tical test, typically with a range statistic (q), at an α
level of significance. If this difference is not signifi-
cant, testing stops and all pairwise differences are re-
garded as null. If, on the other hand, this first range test
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is statistically significant, one “steps down” to examine
the two J – 1 subsets of ordered means, that is, the
smallest mean versus the next-to-largest mean and the
largest mean versus the next-to-smallest mean, with
each tested at a α level of significance. At each stage of
testing, only subsets of ordered means that are statisti-
cally significant are subjected to further testing (with α
= .05). Although the Newman–Keuls procedure is very
popular among applied researchers, it is becoming in-
creasingly well known that when J > 3 it does not con-
trol FWE at α in the strong sense (see Hochberg &
Tamhane, 1987).

Ryan (1960) and Welsch (1977), however, have
shown how to adjust the subset levels of significance to
provide strong FWE control. Specifically, to strongly
control FWE a researcher must

• Test all subset (p = 2, …, J) hypotheses at

, for p = 2, …, J – 2 and at level
αp = α for p = J – 1, J.

• Start testing with an examination of the complete
null hypothesis , and, if re-
jected, step down to examine subsets of J – 1
means, J – 2 means, and so on.

• Accept all subset hypotheses implied by a homo-
geneity hypothesis that has not been rejected as
null without testing (see Appendix A for further
comments).

The REGWQ procedure can be implemented with
the SAS GLM program. Westfall et al. (1999) illus-
trated the additional power that researchers can obtain
with this procedure as compared to Tukey’s (1953) si-
multaneous method (see Appendix A for details re-
garding power analyses). We remind the reader, how-
ever, that this procedure cannot be used to construct
simultaneous confidence intervals. We also note that
there is an F test version of REGWQ available in SPSS
(see Norusis, 2002; by right-clicking with one’s mouse
on the procedure, SPSS will provide a description);
however, SAS has abandoned the F test version.

Multiple Comparison Procedures
for Nonnormally Distributed Data

An underlying assumption of all of the previously
presented multiple comparison procedures is that the
populations from which the data are sampled are nor-
mally distributed. Although it may be convenient (both
practically and statistically) for researchers to assume
that their samples are obtained from normally dis-
tributed populations, this assumption may rarely be ac-
curate (Micceri, 1989; Pearson, 1931; Wilcox, 1990).
Tukey (1960) suggested that most populations are

skewed, contain outliers, or both. Researchers falsely
assuming normally distributed data risk obtaining bi-
ased Type I error rates, Type II error rates, or both for
many patterns of nonnormality, especially when other
assumptions are also not satisfied (e.g., variance ho-
mogeneity; see Wilcox, 1997; Wilcox & Keselman,
2003).

The SAS system allows users to obtain both simul-
taneous and stepwise pairwise comparisons of means
with methods that do not presume normally distributed
data. In particular, users can use either bootstrap or per-
mutation methods to compute all possible pairwise
comparisons, leading to hypothesis tests of such com-
parisons.

Bootstrapping allows users to create their own em-
pirical distribution of the data, and hence adjusted p
values are accordingly based on the empirically ob-
tained distribution, not a theoretically presumed distri-
bution (see Appendix A for greater detail). An example
program for all possible pairwise comparisons is given
by Westfall et al. (1999).

Similarly, pairwise comparisons of means (or ranks)
can be obtained through permutation of the data with the
programprovidedbyWestfall et al. (1999).Permutation
tests also do not require that the data be normally distrib-
uted. Instead of resampling with replacement from a
pooled sample of residuals, permutation tests take the
observed data and randomly
redistributes them to the treatment groups, and sum-
mary statistics (i.e., means or ranks) are then computed
on the randomly redistributed data. The original out-
comes (all possible pairwise differences from the origi-
nal sample means) are then compared to the randomly
generated values (e.g., all possible pairwise differences
in the permutation samples; see Appendix A for further
details).

When users adopt this approach to combat the ef-
fects of nonnormality, they should heed the cautionary
note provided by Westfall et al. (1999); namely, the
procedure may not control the FWE when the data are
heterogeneous, particularly when group sizes are un-
equal. Thus, we introduce another approach: pairwise
comparisons based on robust estimators and a hetero-
scedastic statistic, an approach that has been demon-
strated to generally control the FWE when data are
nonnormal and heterogeneous even when group sizes
are unequal.

Multiple Comparison Procedures
for Normally Distributed

Data/Heterogeneous Population
Variances

The previously presented procedures assume that
the population variances are equal across treatment
conditions. Given available knowledge about the non-
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robustness of multiple comparison procedures with
conventional test statistics (e.g., t, F) and evidence that
population variances are commonly unequal (Kesel-
man, Huberty, et al., 1998), researchers who persist in
applying multiple comparison procedures with con-
ventional test statistics increase the risk of Type I er-
rors. As Olejnik and Lee (1990) concluded, “most ap-
plied researchers are unaware of the problem [of using
conventional test statistics with heterogeneous vari-
ances] and probably are unaware of the alternative so-
lutions when variances differ” (p. 14).

Although recommendations in the literature have
focused on the Games–Howell (Games & Howell,
1976) or Dunnett (1980) procedures for designs with
unequal (e.g., see Kirk, 1995; Norusis, 2002;
Toothaker, 1991), sequential procedures can provide
more power than simultaneous test procedures while
generally controlling the FWE (Hsuing & Olejnik,
1994). However, SPSS does provide simultaneous so-
lutions based on Games–Howell, Dunnett, as well as
other solutions, for unequal variances.

The SAS software can once again be used to obtain
numerical results. In particular, Westfall et al. (1999)
provided SAS programs for logically constrained
step-down pairwise tests when heteroscedasticity ex-
ists. The macro uses SAS’s mixed-model program
(PROC MIXED), which allows for a nonconstant error
structure across groups. Also, the program adopts the
Satterthwaite (1946) solution for error df. Westfall et
al. reminded the reader that the solution requires large
data sets to provide approximately correct FWE
control.

It is important to note that other non-SAS solutions
are possible in the heteroscedastic case. For example,
sequential procedures based on the usual tc statistic can
be easily modified for unequal (and unequal njs)
by substituting Welch’s (1938) statistic, tW(νW) for
tc(ν), where

and and nj and nj′ represent the usual unbi-
ased sample variances and group sizes for the jth and
j′th group, respectively. This statistic is approximated
as a t variate with critical value , the 100(1 –
α/2) quantile of Student’s t distribution with νW df (see
Appendix A for the νW formula).

For procedures simultaneously comparing more
than two means or when an omnibus test statistic is re-
quired (protected tests), robust alternatives to the usual
ANOVA F statistic have been suggested. Possibly the
best known robust omnibus test is due to Welch (1951).
With the Welch procedure (FW), the omnibus null hy-

pothesis is rejected if (see Appendix A
for the formulas for FW and νW). The Welch test has
been found to be robust for largest to smallest variance
ratios less than 10:1 (Wilcox, Charlin, & Thompson,
1986).

Based on the preceding, one can use the nonpooled
Welch test and its accompanying df to obtain various
stepwise multiple comparison procedures. For exam-
ple, Keselman et al. (1999) verified that one can use
this approach with Hochberg’s (1988) step-up Bon-
ferroni multiple comparison procedure (see Westfall et
al., 1999) as well as with Benjamini and Hochberg’s
(1995) false discovery rate method to conduct all pos-
sible pairwise comparisons in the heteroscedastic case.

Multiple Comparison Procedures
for Nonnormally Distributed

Data/Heterogeneous Population
Variances

A different type of testing procedure, based on
trimmed (or censored) means, has been discussed by
Yuen and Dixon (1973), Wilcox (1995, 2002, 2003),
and Wilcox and Keselman (2003) and is purportedly
robust to violations of normality. That is, it is well
known that the usual group means and variances,
which are the basis for all of the previously described
procedures, are greatly influenced by the presence of
extreme observations in distributions. In particular, the
standard error of the usual mean can become seriously
inflated when the underlying distribution has heavy
tails. Accordingly, adopting a nonrobust measure “can
give a distorted view of how the typical individual in
one group compares to the typical individual in an-
other, and about accurate probability coverage, con-
trolling the probability of a Type I error, and achieving
relatively high power” (Wilcox, 1995, p. 66; see also
Wilcox & Keselman, 2003). By substituting robust
measures of location and scale for the usual mean and
variance, it should be possible to obtain test statistics
that are insensitive to the combined effects of variance
heterogeneity and nonnormality. Many researchers
subscribe to the position that inferences pertaining to
robust parameters are more valid than inferences per-
taining to the usual least squares parameters when they
are dealing with populations that are nonnormal in
form (e.g., Hampel, Ronchetti, Rousseeuw, & Stahel,
1986; Huber, 1981; Staudte & Sheather, 1990).

Although a wide range of robust estimators have
been proposed in the literature (see Gross, 1976), the
trimmed mean and Winsorized variance are intuitively
appealing because of their computational simplicity
and good theoretical properties (Wilcox, 1995). The
standard error of the trimmed mean is less affected by
departures from normality than the usual mean be-
cause extreme observations—that is, observations in
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the tails of a distribution—are censored or removed.
Furthermore, as Gross noted, “the Winsorized variance
is a consistent estimator of the variance of the corre-
sponding trimmed mean” (p. 410). In computing the
Winsorized variance, the most extreme observations
are replaced with less extreme values in the distribu-
tion of scores.

Specifically trimmed means are computed by re-
moving a percentage of observations from each of the
tails of a distribution (set of observations). To calculate
a trimmed mean, simply remove a determined percent-
age of the observations and compute the mean from
the remaining observations. To calculate a Winsorized
variance, the smallest nontrimmed score replaces the
scores trimmed from the lower tail of the distribution
and the largest nontrimmed score replaces the observa-
tions removed from the upper tail. The nontrimmed
and replaced scores are called Winsorized scores. A
Winsorized variance is calculated by applying the usu-
al formula for the variance to the Winsorized scores.
The Winsorized variance is used because it can be
shown that the standard error of a trimmed mean is a
function of the Winsorized variance (see Wilcox &
Keselman, 2003). A common symmetric trimming
percentage is 20%. See Wilcox (2003) for a justifica-
tion of 20% trimming. Computational definitions of
the trimmed mean and Winsorized variance are given
in Appendix A.

To test a pairwise comparison null hypothesis, com-
pute and d, the sample trimmed mean and squared
standard error of the mean, respectively, for the jth
group; label the results and dj. The robust pairwise
test (see Keselman, Lix, & Kowalchuk, 1998) becomes

(see Appendix A for the νWt formula). When trimmed
means are being compared, the null hypothesis relates
to the equality of population trimmed means, instead of
population means. Therefore, instead of testing H0: µj

= µj′, a researcher would test the null hypothesis, H0:
µtj = µtj′, where µt represents the population trimmed
mean.

Yuen and Dixon (1973) and Wilcox (1995) reported
that for long-tailed distributions, tests based on
trimmed means and Winsorized variances can be much
more powerful than tests based on the usual mean and
variance. Accordingly, when researchers feel they are
dealing with nonnormal data, they can replace the
usual least squares estimators of central tendency and
variability with robust estimators and apply these esti-
mators in any of the previously recommended multiple
comparison procedures (see Keselman, Othman, Wil-
cox, & Fradette, 2004, for another robust statistic).

A Model-Testing Procedure

The following procedure takes a completely differ-
ent approach to specifying differences between the
treatment group means. That is, unlike previous ap-
proaches that rely on a test statistic to reject or accept
pairwise null hypotheses, the approach we describe
uses an information criterion statistic to select a con-
figuration of population means that most likely corre-
sponds with the observed data. Thus, as Dayton (1998)
noted, “model-selection techniques are not statistical
tests for which type-I error control is an issue” (p. 145).

When testing all pairwise comparisons, intransitive
decisions are extremely common with conventional
multiple comparison procedures (Dayton, 1998). An
intransitive decision refers to declaring a population
mean (µj) not significantly different from two different
population means (µj = µj′, µj = µj′′), when the latter two
means are declared significantly different (µj′ ≠ µj′′).
For example, a researcher conducting all pairwise
comparisons (J = 4) may decide not to reject any hy-
potheses implied by µ1 = µ2 = µ3 or µ3 = µ4, but reject
µ1 = µ4 and µ2 = µ4, based on results from a conven-
tional multiple comparison procedure. Interpreting the
results of this experiment can be ambiguous, especially
concerning the outcome for µ3.

Dayton (1998) proposed a model-testing approach
based on Akaike’s (1974) Information Criterion. Mu-
tually exclusive and transitive models are each evalu-
ated using Akaike’s criterion, and the model having the
minimum criterion is retained as the most probable
population mean configuration (see Appendix A for
details). For example, for J = 4 (with ordered means)
there would be 2J – 1 = 8 different models to be evalu-
ated ({1234}, {1, 234}, {12, 34}, {123, 4}, {1, 2, 34},
{12, 3, 4}, {1, 23, 4}, {1, 2, 3, 4}). To illustrate, the
model {12, 3, 4} postulates a population mean config-
uration in which Groups 1 and 2 are derived from the
same population, whereas Groups 3 and 4 each repre-
sent distinct populations. The model having the lowest
criterion value would be retained as the most probable
population model.

Dayton’s (1998) model-testing approach has the
virtue of avoiding intransitive decisions. It is more
powerful in the sense of all-pairs power than Tukey’s
honestly significant difference, which is not designed
to avoid intransitive decisions. One finding reported by
Dayton, as well as Huang and Dayton (1995), is that
the information criterion approach has a slight bias for
selecting more complicated models than the true
model. For example, Dayton found that for the mean
pattern {12, 3, 4}, his information criterion approach
selected the more complicated pattern {1, 2, 3, 4} more
than 10% of the time, whereas the information crite-
rion only rarely selected less complicated models (e.g.,
{12, 34}). This tendency can present a special problem
for the complete null case {1234}, in which the infor-
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mation criterion approach has a tendency to select
more complicated models. Consequently, a recom-
mendation by Huang and Dayton is to use an omnibus
test to screen for the null case and then, assuming re-
jection of the null, apply the Dayton procedure.

Dayton’s (1998) model-testing approach can be
modified to handle heterogeneous treatment group
variances. Like the original procedure, mutually exclu-
sive and transitive models are each evaluated using
Akaike’s (1974) Information Criterion, and the model
having the minimum criterion is retained as the most
probable population mean configuration (see Appen-
dix A for details). As in the original Dayton procedure,
an appropriate omnibus test can also be applied.

Generalizations to Factorial Designs

Though we have presented “newer” pairwise multi-
ple comparison procedures within the context of a
one-way completely randomized design, the reader
should note that all of the methods we have discussed
can be applied to examining pairwise differences in
more complex designs, specifically for examining
pairwise differences in factorial designs. For example,
the multiple comparison procedures that use the Welch
(1938) heteroscedastic statistic with trimmed means
can be adapted to completely randomized factorial de-
signs and between by within-subjects repeated mea-
sures designs. Lix and Keselman (1995) and Kesel-
man, Wilcox, and Lix (2003) demonstrated the use of
this statistic for performing pairwise contrasts in these
designs. In particular, they demonstrated the computa-
tion of pairwise differences on the marginal cell means
as well as tetrad (i.e., pairwise by pairwise) contrasts of
the interaction effect (see Jaccard & Guilamo-Ramos,
2002a, 2002b).

Researchers can also compute pairwise differences
within a particular row or column of their factorial de-
sign. Though it is well known that these tests do not ex-
amine interaction effects, they nonetheless can provide
applied researchers with valuable information (see Jac-
card & Guilamo-Ramos, 2002a, 2002b). Accordingly,
we note that appropriate multiple comparison proce-
dures are available for this task (see Appendix A and
Cheung & Chan, 1996).

Summary

Selecting an appropriate multiple comparison pro-
cedure requires an extensive assessment of available
information regarding the testing situation. Informa-
tion about the importance of Type I errors, power, com-
putational simplicity, and so on are extremely impor-
tant to the selection process. In addition, the selection
of a proper multiple comparison procedure is depend-

ent on data conforming to validity assumptions, such
as normality and variance homogeneity. Routinely se-
lecting a procedure without careful consideration of
available information and alternatives can severely re-
duce the reliability and validity of the results.

Recently, several pairwise multiple comparison
procedures have been proposed that improve on one or
more aspects of previously recommended multiple
comparison procedures. In particular, stepwise proce-
dures that control the overall rate of Type I error in a
strong sense, as well as methods resulting from boot-
strapping and permuting the data and methods that
substitute robust estimators and heteroscedastic test
statistics for the usual estimators and statistics, are now
available. In addition to defining these newer methods,
we also indicated statistical software that can be used
to obtain numerical results. Indeed, our guiding princi-
ple for selecting which procedures to review was based
on our belief that only procedures that can be obtained
through a statistical package are likely to be adopted by
researchers. Accordingly, we emphasized many of the
procedures that are available through the SAS system
because Westfall et al. (1999) have provided many use-
ful programs for obtaining numerical solutions. In con-
clusion, we encourage researchers to switch from older
methods for assessing pairwise multiple comparisons
to the newer approaches we have reviewed.

Numerical Example

We present a numerical example for the previously
discussed multiple comparison procedures so the read-
er can check his or her facility to work with the
SAS/Westfall et al. (1999) programs and to demon-
strate through example the differences between their
operating characteristics.

Consider a study of shyness and social anxiety in
which the primary outcome variable was a fear of neg-
ative evaluation (i.e., apprehension about negative
evaluations by others; Watson & Friend, 1969). One
hundred fifty adolescents read one of five scenarios de-
scribing a social situation and then indicated the extent
to which they would be concerned about a negative
evaluation in that situation using a modified version of
Leary’s (1983) brief version of the Watson and Friend
Fear of Negative Evaluation scale. The measure asked
respondents to rate 12 statements taken from this scale
but that were adapted for situational analysis (e.g., “In
this situation, I would be worried about what kind of
impression I would make”). Each statement was rated
on a 5-point, Likert type scale of 1 (strongly disagree),
2 (moderately disagree), 3 (neither agree nor dis-
agree), 4 (moderately agree), or 5 (strongly agree).
Higher scores indicate a response pattern consistent
with greater fear of negative evaluation. The responses
were averaged across the 12 items.
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The five scenarios described a social interaction in a
school setting, and the only attribute that varied was
the description of the main person the adolescent
would be interacting with in the scenario. The person
was described as either being two grade levels below
the respondent, one grade level below the respondent,
the same grade level as the respondent, one grade level
above the respondent, or two grade levels above the re-
spondent. The investigator was interested in the extent
to which adolescents had greater fear of negative eval-
uations as a function of the age or grade level of the
person they were interacting with.

The data presented in Ta-
ble 1 were randomly generated by us, though they
could represent the outcomes of the problem just
described.

Table 2 contains adjusted p values and FWE (α =
.05) significant (*) values for the 10 pairwise compari-
sons for the five groups. The results reported in Table 2
conform, not surprisingly, to the properties of the mul-
tiple comparison procedures that we discussed previ-
ously. In particular, of the 10 comparisons, 5 were
found to be statistically significant with the Tukey
(1953), Hayter (1986), REGWQ, bootstrap, stepdown
bootstrap, and permutation procedures: µ1 – µ3, µ1 –
µ4, µ1 – µ5, µ2 – µ4, and µ2 – µ5. The Benjamini and
Hochberg (1995) and adaptive Benjamini and
Hochberg (2000) multiple comparison procedures, on
the other hand, resulted in 6 statistically significant
comparisons; µ1 – µ3, µ1 – µ4, µ1 – µ5, µ2 – µ4, µ2 – µ5,
and µ3 – µ5. (Numerical results for the adaptive Ben-
jamini and Hochberg procedure were not obtained
through SAS; they were obtained through hand calcu-
lations.) Clearly the procedures based on the more lib-

eral false discovery rate found more comparisons to be
statistical significant than the FWE controlling multi-
ple comparison procedures.

We also investigated the 10 pairwise comparisons
with the trimmed means and model-testing procedures;
the results for the trimmed means analysis are also re-
ported in Table 2. Numerical results for robust esti-
mation and testing were obtained through SPSS
(Norusis, 2002; see Appendix B for the SPSS pro-
gram). In particular, we computed the group trimmed
means

as well as the group Winsorized standard
deviations

. One can use the SAS/IML
program referred to by Keselman et al. (2003) to ob-
tain the trimmed means and Winsorized standard de-
viations. These values (as well as the effective sample
sizes ) were then read into an SPSS
file and we allowed SPSS to calculate nonpooled t
statistics (tWt and νWt) and their corresponding p val-
ues (through the ONEWAY program). The results re-
ported in Table 2 indicate that with this approach,
seven comparisons were found to be statistically sig-
nificant; that is, all comparisons except µ1 – µ2, µ3 –
µ4, and µ4 – µ5.

With regard to the model-testing approach we exam-
ined the 2J – 1 models of nonoverlapping subsets of or-
dered means and used the minimum Akaike (1974) In-
formation Criterion value to find the best model that “is
expected to result in the smallest loss of precision rela-
tive to the true, but unknown, model” (Dayton, 1998, p.
145). From the 16 models examined, the “winning”
models combine one pair, but there are other models that
are plausible given the data available. That is, there are 3
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Table 1. Data Values and Summary Statistics (Means and Standard Deviations) for the Empirical Example

Two Grades Below One Grade Below Same Grade One Grade Above Two Grades Above

1.07 2.01 2.47 3.65 2.94
1.77 1.30 2.82 3.58 3.04
1.58 3.21 2.52 1.91 3.01
1.51 1.79 2.83 4.21 2.06
0.32 1.99 2.60 3.18 3.32
0.39 3.09 2.25 2.27 1.87
1.55 1.83 3.16 2.71 2.32
3.11 1.75 2.55 3.71 4.00
1.65 2.56 2.55 3.63 5.21
1.55 1.22 2.75 1.10 2.25
1.53 2.00 1.55 4.17 3.65
0.87 2.85 0.59 2.45 4.23
2.94 0.89 3.14 3.17 3.76
1.10 1.78 3.36 2.74 3.87
1.44 1.38 2.83 1.68 2.63
0.37 1.75 1.72 3.50 2.87
0.58 1.09 2.14 2.42 2.56
2.61 2.92 4.38 2.08 3.52
2.39 3.08 1.96 1.01 3.91
2.27 1.02 2.11 3.41 2.69
M 1.530 1.974 2.513 2.828 3.186
SD 0.823 0.742 0.772 0.948 0.836
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to 4 similar models that differ with respect to whether
one or another pair of means is combined, or none: {1, 2,
34, 5}, {1, 2, 3, 45}, {1, 2, 3, 4, 5}, and {12, 34, 5} with
criterion values of 252.24, 252.65, 252.66, and 253.21,
respectively. If one must choose a best model, then it is
{1, 2, 34, 5} (minimum criterion value; results were ob-
tained through hand calculations. However, a GAUSS
program is available from the Department of Measure-
ment and Statistics, University of Maryland Web site).
Though this ambiguity might seem like a negative fea-
tureof themodel-testingapproach,Daytonwouldmain-
tain that being able to enumerate a set of conclusions
(i.e., competing models) provides a broader, more com-
prehensive perspective regarding group differences
than does the traditional approach.

Recommendations

We conclude by suggesting “optimal” multiple
comparison strategies researchers may follow with the
following caveat in mind. That is, it is not possible to
recommend one specific pairwise multiple comparison
procedure across all situations that applied researchers
may encounter; no one procedure would be “best.” As
stated earlier, the choice among multiple comparison
procedures rests on issues such as (a) the type of error
control one wants to set, (b) the balance between Type I
and Type II (hence power) errors that is sought, (c)
whether the classical assumptions of normality and
homoscedasticity hold, and (d) the availability of sta-
tistical software to obtain numerical results—that is, an
ease of computation issue. Thus, we enumerate a num-
ber of scenarios that might describe one’s data and
within each of these contexts suggest a multiple com-
parison procedure that we like.

Scenario 1

Scenario 1 is a design with four or five groups in
which the sample sizes are somewhat small and

power is a bit of a problem. The researcher has a
strong enough theory to motivate including all the
groups in the study, but not so strong a theory as to
have a priori predictions about which groups will dif-
fer in which ways. Normality and variance homoge-
neity assumptions are tenable. The researcher does
not want to adopt a method that provides weak Type I
error (FWE) control and would prefer one that pro-
vides strong(er) control. That is, the researcher seeks
to limit the overall rate of Type I error at some rea-
sonable value (e.g., 5%) and achieve as much power
as possible to detect pairwise differences given the
small sample sizes available.

Recommendations. When there are four or five
groups there would be a total of 6 or 10 pairwise com-
parisons, respectively. In the first case we would rec-
ommend the REGWQ procedure. As we noted previ-
ously, it is a stepwise procedure that should provide
more power to detect pairwise differences than the si-
multaneous test procedure due to Tukey (1953). Also,
numerical computations can be implemented with the
SAS GLM program. However, in the second case, in
which many comparisons will be computed, research-
ers can optimize their likelihood of detecting nonnull
pairwise differences by adopting the false discovery
rate method of control due to Benjamini and Hochberg
(1995, 2000). Numerical results can either be obtained
through SAS’s MULTTEST or as we have demon-
strated with our numerical example. For researchers
who want to avoid the possibility of intransitive out-
comes, Dayton’s (1998) model-testing approach can
be adopted. Remember that this approach provides, ac-
cording to Dayton, a holistic examination of the pair-
wise multiple comparison problem by revealing a set
of competing models that purport to describe the “true”
state of nature. Lastly, if the researcher wants to set
simultaneous intervals around pairwise differences,
then he or she must select a simultaneous procedure—
Tukey.
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Table 2. Adjusted p Values and FWE (α = .05) Significant (*) Comparisons

µj – µj’ Tukey Hayter REGWQ Boot Stepb Perm BH BH–A TM

1 vs 2 .4368 .4370 .2373 .4334 .1146 .2046
1 vs 3 .0026 * * .0025 .0018 .0026 .0008 * .0010
1 vs 4 <.0001 * * <.0001 <.0001 <.0001 .0002 * .0009
1 vs 5 <.0001 * * <.0001 <.0001 <.0001 .0002 * <.0001
2 vs 3 .2466 .2489 .1446 .2453 .0603 .0392
2 vs 4 .0130 * * .0127 .0080 .0127 .0030 * .0129
2 vs 5 .0001 * * .0002 .0001 .0002 .0002 * .0016
3 vs 4 .7488 .7499 .2967 .7472 .2314 .2038
3 vs 5 .0847 .0851 .0506 .0854 .0197 * .0298
4 vs 5 .6525 .6533 .2967 .6509 .1956 .5048

Note: Tukey–Tukey (1953); Hayter–Hayter (1986); REGWQ = Ryan (1960)–Einot & Gabriel (1975)–Welsch (1977); Boot = Bootstrap; Stepb =
Stepwise bootstrap; Perm = Permutation—Westfall et al. (1999); BH = Benjamini & Hochberg (1995); BH–A = Adaptive—Benjamini &
Hochberg (2000); TM = trimmed means (and Winsorized variances) used with a nonpooled t test and BH critical constants. Raw trimmed mean p
values: .1842, .0003, .0002, <.0001, .0275, .0065, .0006, .1631, .0179, .5048.



Scenario 2

Scenario 2 is the set-up described in Scenario 1;
however, normality and variance homogeneity as-
sumptions are not tenable.

Recommendations. Our recommendations for
this scenario are basically the ones we offered in Sce-
nario 1; however, rather than adopting the usual sta-
tistic (i.e., Student’s t test) with the usual least
squares estimators for mean and variance, researchers
should use a heteroscedastic statistic, such as Welch’s
(1938) t test, with robust estimators, that is trimmed
means and Winsorized variances. This robust proce-
dure can then be applied with the REGWQ or
Benjamini and Hochberg (1995, 2000) procedures.
Though the major statistical software packages do not
perform robust analyses, a numerical solution can
easily be obtained. Keselman et al. (2003) provided a
SAS/IML (SAS Institute, 1989) program that can be
used to obtain numerical results for omnibus and fo-
cused (e.g., pairwise comparisons) tests in independ-
ent and correlated groups designs (see also Appendix
C). Adopting robust procedures is particularly crucial
when group sizes are unequal. Unequal group sizes,
for example, exacerbate the effects of variance heter-
ogeneity. One can set simultaneous confidence inter-
vals around pairwise differences involving robust sta-
tistics (i.e., trimmed means; see Wilcox, 2003).

Scenarios 3 and 4

Scenarios 3 and 4 are identical to the Scenarios 1
and 2 but for exactly three groups.

Recommendations. For Scenario 3 we would
recommend the Fisher (1935)–Hayter (1986) two-
stage procedure. In the three-group problem, one can
in fact use Fisher’s least significant difference proce-
dure, setting a CWE rate of α = .05 on each pairwise
difference, and the FWE will not exceed .05. Accord-
ingly, this procedure should optimize one’s chances
of finding true pairwise differences among the popu-
lation means. If simultaneous confidence intervals are
of interest, then researchers could adopt Tukey’s
(1953) procedure (see Westfall et al., 1999). Again,
researchers have the alternative choice of adopting
Dayton’s (1998) model-testing approach. For Sce-
nario 4, we also recommend the Fisher two-stage test;
however, as in Scenario 2, we recommend that re-
searchers adopt a heteroscedastic statistic based on
trimmed means and Winsorized variances (see
Cribbie & Keselman, 2003a, 2003b). Again, if one
wants to set simultaneous confidence intervals when
assumptions (normality and homogeneity) are not
satisfied, robust procedures should be used (e.g., see
Wilcox, 2003).
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Appendix A

False Discovery Rate Control

Suppose we have J means, µ1, µ2, …, µJ, and our in-
terest is in testing the family of C pairwise hypotheses,
H0: µj – µj′ = 0, of which m0 are true. Let S equal the
number of correctly rejected hypotheses from the set of
R rejections; the number of falsely rejected pairs will
be V. In terms of the random variable V, the compari-
sonwise error rate is E(V/C), whereas the familywise
rate is given by P(V ≥ 1). Thus, testing each and every
comparison at α guarantees that E(V/C) ≤ α, whereas,
according to the Bonferroni inequality, testing each
and every comparison at level α/C guarantees that P(V
≥ 1) ≤ α.

According to Benjamini and Hochberg (1995), the
proportion of errors committed by falsely rejecting null

hypotheses can be expressed through the random vari-
able Q = V/R, that is, the proportion of rejected hypoth-
eses that are erroneously rejected. (It is important to
note that Q is defined to be zero when R = 0; that is, the
error rate is zero when there are no rejections.) False
discovery rate was defined by Benjamini and Hoch-
berg as the mean of Q, that is

That is, the false discovery rate is the expected propor-
tion of false discoveries or false positives.

As Benjamini and Hochberg (1995) indicated, this
error rate has a number of important properties:

(a) If then all C pairwise com-
parisons truly equal zero, and therefore the false discov-
ery rate is equivalent to the familywise rate; that is, in the
case of the complete null being true, false discovery rate
control implies familywise control. Specifically, in the
caseof thecompletenullhypothesisbeing true,S=0and
thereforeV=R.So, ifV=0, thenQ=0,and ifV>0thenQ
= 1 and accordingly P(V ≥ 1) = E(Q).

(b) In testing the family of pairwise hypotheses, of
which m0 are true, when m0 < C, the false discovery
rate is smaller than or equal to the familywise rate of
error. The false discovery rate is smaller than or equal
to the familywise rate of error because, in this case,
FWE = P(R ≥ 1) ≥ E(V/R) = E(Q). This indicates that if
the familywise rate is controlled for a procedure, then
the false discovery rate is as well. Moreover, if one
adopts a procedure that provides false discovery rate
control, rather than strong (i.e., over all possible mean
configurations) familywise control, then based on the
preceding relation, a gain in power can be expected.

(c) V/R tends to be smaller when there are fewer
pairs of equal means and when the nonequal pairs are
more divergent, resulting in a greater differences in
false discovery rate and the familywise value and thus a
greater likelihood of increased power by adopting false
discovery rate control.

Adjusted p Values

To illustrate the calculation of an adjusted p value,
consider the usual Bonferroni procedure. In its usual
application, H0c is rejected if the p value is less than or
equal to α/C, where C stands for the number of com-
parisons (tests). Note that this is equivalent to rejecting
any H0c for which C· pc is less than or equal to α, where
pc is the usual (nonmultiplicity adjusted) p value.
Therefore, Bonferroni adjusted p values are
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Westfall et al. (1999) provided programs (2.4 and 2.5)
that convert unadjusted pc values to multiplicity ad-
justed

Error Rate Definitions

For completeness, we provide definitions of these
rates of error. The comparisonwise error rate is de-
fined as

That is, the comparisonwise error rate is the usual
probability of rejecting a null hypothesis (H0), given
that (|) the null hypothesis is true. On the other hand,
the FWE rate for multiple tests of significance in which
some hypotheses are true and
the remaining (k – m) are false is given by

A Statistical Model for the Problem

A statistical model that can be adopted when exam-
ining pairwise mean differences in a one-way com-
pletely randomized design is

where Yij is the score of the ith participant (i = 1, …, n) in
the jth (j = 1, …, J) group (Σjn = N), µj is the jth group
mean, and εij is the random error for the ith participant in
the jth group. In the typical application of the model, it is
assumed that the εijs are normally and independently
distributedand that the treatmentgroupvariances
are equal. Relevant sample estimates include

A confidence interval for a pairwise difference µj –
µj′ has the form

where cα is selected such that FWE = α. In the case of
all possible pairwise comparisons, one needs a cα for
the set such that they simultaneously surround the true
differences with a specified level of significance. That
is, for all j ≠ j′, cα must satisfy

The Unequal Group Size Version
of Tukey’s (1953) Multiple Comparison
Procedure—The Tukey–Kramer
(1956) Method

A pairwise test statistic uses the unequal sample
size case t test formula presented in the body of the text
and significance is assessed by comparing

Hayter (1984) proved that the Tukey–Kramer multiple
comparison procedure only approximately controls the
FWE—the rate is slightly conservative; that is, the true
rate of Type I error will be less than the significance
level. The general linear model procedure in SAS will
automatically compute the Kramer version of Tukey’s
test when group sizes are unequal.

It should be noted that pairwise comparisons can be
computed with statistics other than Student’s t test. In
particular, one may use a Studentized range (q) or F
test. For a pairwise comparison, these tests, respec-
tively, would be

and

Statistical packages use different test statistics and au-
thors of texts and articles do as well. We choose the t
test because of its almost universality. However, by un-
derstanding the relation between these tests, research-
ers can easily convert from one to the other. The rela-
tions one should know are

Power Analysis for the Tukey Multiple
Comparison Procedure

To illustrate, consider the power to detect a particu-
lar pairwise difference, that is, individual power. To de-
tect a difference (δ) between µj and µj′ either
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or

where, as indicated, The individ-
ual power, therefore, is the sum of the probabilities of
these two events. These two probabilities can be ob-
tained from SASs PROBT function; that is, PROBT cal-
culates probabilities for the noncentral Student t distri-
bution with J(n – 1) df and noncentrality parameter

Westfall et al. (1999) provided a macro
(%Individual Power) for obtaining numerical results.
These authors also provide a macro (%SimPower) that
computes complete, minimal, and proportional power.

Adjusted p Values for the Benjamini
and Hochberg (1995) False Discovery
Rate Multiple Comparison Procedure

Statistical significance can be assessed once again
with adjusted p values. For the Benjamini and Hoch-
berg (1995) false discovery rate method of control, the
adjusted p values are

Note that min stands for minimum; thus min(a, b)
means select a if it is the minimum value or b if it is
the minimum value. Westfall et al. (1999) provided a
program (2.11) that converts unadjusted pc values to
adjusted false discovery rate adjusted values. With
adjusted values researchers can present a fuller in-
terpretation of their results. For example, the first 5 of
10 false discovery rates adjusted values reported by
Westfall et al. in the output from program 2.11 are
0.00100, 0.02900, 0.04400, 0.07225, and 0.09960.
With this information, a researcher can state that three
of the comparisons were significant at the α = .05 level
(i.e., 0.00100, 0.02900, 0.04400), whereas two com-
parisons were significant at α = .10 the level (i.e.,
0.07225 and 0.09960).

We illustrate this algorithm with the numerical ex-
ample raw p values (see Table 2). After rank ordering
the raw p values, we see that the comparison of Group
4 versus Group 5 has the largest raw p value, .5048,

hence The second largest raw p value is
for the comparison of Groups 1 and 2 and equals .1842.

Accordingly, (10/9)(p(9))] =
min[.5048, (10/9)(.1842)] = .2046. Based on the next
largest raw p value (.1631—Group 3 vs. Group 4),

(10/8)(p(9))] = min[.2046, (10/8)(.1631)]
= .2038 and so on.

Benjamini and Hochberg’s (2000)
Modified (Adaptive) Multiple
Comparison Procedure

Benjamini and Hochberg (2000) also presented a
modified (adaptive) version of their original procedure
that utilizes the data to estimate the number of true Hcs.
(The adaptive Benjamini and Hochberg procedure has
only been demonstrated, not proven, to control false
discovery rate, and only in the independent case.) With
the original procedure, when the number of true null
hypotheses (CT) is less than the total number of hy-
potheses, the false discovery rate is controlled at a level
less than that specified (α).

To compute the modified Benjamini and Hochberg
(2000) procedure, the pc values are ordered (smallest to
largest) p1, …, pc, and for any c = C, C – 1, …, 1, if pc ≤
α(c/C), reject all Hc′ (c′ ≤ c), as in the Benjamini and
Hochberg (1995) procedure. If all Hcs are retained,
testing stops. If any Hc is rejected with the criterion of
the Benjamini and Hochberg procedure, then testing
continues by estimating the slopes Sc = (1 – pc)/(C + 1 –
c), where c = 1, …, C. Then, for any c = C, C – 1, …, 1,
if =
min [(1/S*) + 1, C], [x] is largest integer less than or
equal to x and S* is the minimum value of Sc such that
Sc < Sc – 1. If all Sc > Sc – 1, S* is set at C.

One disadvantage of the modified Benjamini and
Hochberg (2000) procedure, noted by both Benjamini
and Hochberg and Holland and Cheung (2002), is that it
ispossible foranHc tobe rejectedwithpc>α.Therefore,
it is suggested, by both authors, that Hc only be rejected
if (a) thehypothesissatisfies therejectioncriterionof the
modified Benjamini and Hochberg procedure and (b) pc

≤α.To illustrate thisprocedure, assumearesearcherhas
conducted a study with J = 4 and α = .05. The ordered p
values associated with the C = 6 pairwise comparisons
are: p1 = .0014, p2 = .0044, p3 = .0097, p4 = .0145, p5 =
.0490, and p6 = .1239. The first stage of the modified
Benjamini and Hochberg procedure would involve
comparing p6 = .1239 to α(c/C) = .05(6/6) = .05. Be-
cause .1239 > .05, the procedure would continue by
comparing p5 = .0490 to α(c/C) = .05(5/6) = .0417.
Again,because .0490> .0417, theprocedurewouldcon-
tinue by comparing p4 = .0145 to α(c/C) = .05(4/6) =
.0333. Because .0145 < .0333, H4 would be rejected.
Because at least one Hc was rejected during the first
stage, testingcontinuesbyestimatingeachof theslopes,
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Sc = (1 – pc)/(C – c + 1), for c = 1, …, C. The calculated
slopes for this example are as follows: S1 = .1664, S2 =
.1991, S3 = .2475, S4 = .3285, S5 = .4755, and S6 = .8761.
Given that all Sc > Sc – 1, S* is set at C = 6. The estimated
number of true nulls is then determined by

= min
[1.1667, 6] = 1. Therefore, the modified Benjamini and
Hochberg procedure would compare p6 = .1239 to

Because .1239, < .30, but .1239 > α, H6 would not
be rejected and the procedure would continue by com-
paring Be-
cause .0490 < .25 and .0490 < α, H5 would be rejected;
in addition, all Hc′ would also be rejected (i.e., H1, H2,
H3, and H4).

Closed Testing

These methods are designated as closed testing pro-
cedures because they address families of hypotheses
that are closed under intersection (∩). By definition, a
closed family “is one for which any subset intersection
hypothesis involving members of the family of tests is
also a member of the family” (Westfall et al., 1999,
p. 150).

To illustrate, suppose that one wants to test all pos-
sible pairwise comparisons among four means; that is,
six pairwise tests. The closed set is formed by taking
all possible intersections among the pairwise hypothe-
ses. An important point to remember is that a hypothe-
sis that is formed by an intersection of two or more hy-
potheses is true if and only if all of the components are
true. For example, if we intersect H2,3: µ2 = µ3 with,
say, H2,4: µ2 = µ4, we obtain H2,3,4: µ2 = µ3 = µ4 because
if µ2 = µ3 and µ2 = µ4 then it must be the case that µ2 =
µ3 = µ4. Forming all possible intersections we get 14
hypotheses in the closed family:

• The six pairwise homogeneity hypotheses H1,2:
µ1 = µ2, H1,3: µ1 = µ3, H1,4: µ1 = µ4, H2,3: µ2 = µ3,
H2,4: µ2 = µ4, H3,4: µ3 = µ4.

• The four three-means homogeneity hypotheses
H1,2,3: µ1 = µ2 = µ3, H1,2,4: µ1 = µ2 = µ4, H1,3,4: µ1

= µ3 = µ4, H2,3,4: µ2 = µ3 = µ4.
• The one four-means homogeneity hypothesis

H1,2,3,4: µ1 = µ2 = µ3 = µ4.
• The three subset intersection hypotheses

H(1,2)∩(3,4): µ1 = µ2 and µ3 = µ4, H(1,3)∩(2,4): µ1 = µ3

and µ2 = µ4, H(1,4)∩(2,3): µ1 = µ4 and µ2 = µ3.

Because of the hierarchical structure of the hypoth-
eses, there are a number of important implications re-
lated to the stepwise testing format. Specifically, if
H(1,2)∩(3,4): µ1 = µ2 and µ3 = µ4 is true, then it follows
that both H1,2: µ1 = µ2 and H3,4: µ3 = µ4 are necessarily
true. That is, the truth of H(1,2)∩(3,4) implies the truths of

H1,2 and H3,4. These types of implications for closed
testing procedures are referred to as the coherence
property of these methods. Coherence states that if H+

implies H++, then whenever H+ is retained so must H++.

Coherent Results

According to Marcus, Peritz, and Gabriel (1976)
and as enumerated by Westfall et al. (1999), the follow-
ing procedure guarantees coherence and strong FWE
control: First, “test every member of the closed family
by a (suitable) α level test (α is CWE controlled not
FWE controlled). Second, a hypothesis can be rejected
provided (1) its corresponding test was significant at α,
and (2) every other hypothesis in the family that im-
plies it has also been rejected by its corresponding α
level test” Westfall et al. (1999, p. 151).

REGWQ

Westfall et al. (1999) indicated “by using the Ry-
an–Einot–Gabriel–Welsch Q procedure, strong control
is conservatively ensured by testing directly all subset
homogeneity hypotheses, and indirectly all subset in-
tersection hypotheses” (p. 154). Additionally, a nice
feature about using a range procedure when testing ho-
mogeneity hypotheses is that when a subset homo-
geneity hypothesis is rejected, one can automatically
reject the equality of the population means cor-
responding to the smallest and largest means in the set.

Power Analysis for REGWQ

Researchers can use Westfall et al.’s (1999) macro
(%SimPower) to examine complete, minimal, and pro-
portional power.

Bootstrapped Adjusted p Values

The empirical distribution, say , is obtained by
sampling, with replacement, the pooled sample residu-
als That is, rather than assume
that residuals are normally distributed, one uses empir-
ically generated residuals to estimate the true shape of
the distribution. From the pooled sample residuals one
generates bootstrap data.

Westfall et al.’s (1999) PROC MULTTEST com-
putes adjusted p values. Bootstrapping of adjusted p
values with their MULTTEST program is performed in
the following manner:

• Bootstrap data, is generated by sampling with
replacement fromthepooledsampleof residuals.

• Based on the bootstrapped data,
values are obtained from the pairwise tests.

• This process is repeated many times (PROC
MULTTEST allows the user to set the number of
replications).
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• For stepwise testing, PROC MULTTEST uses
minima over appropriate restricted subsets to ob-
tain the adjusted p values.

A Permutation Multiple Comparison
Procedure

If is the difference between the first two
treatment group means based on a permutation of the
data, then a permutation p value can be computed as

(this is for an upper-tailed
test; this statement is modified for a lower- or two-
tailed test). Accordingly, for pairwise comparisons, the
adjusted p values are calculated as
pc), where the are computed from the permutated
data.

Welch’s (1938) Formula for νW

In the formula stand for the jth (j ≠ j′) un-
biased group variance and sample size, respectively.

Welch’s (1951) Formula for FW and νW

where The statistic
is approximately distributed as an F variate and is re-
ferred to the critical value, the 100(1 – α)
quantile of the F distribution with J – 1 and νW df,
where

Trimmed Means and Winsorized
Variances

Let Y(1) ≤ Y(2) ≤ … ≤ Y(n) represent the ordered ob-
servations associated with a group. Let g = [γ n], where
γ represents the proportion of observations that are to

be trimmed in each tail of the distribution and [x] is no-
tation for the largest integer not exceeding x. Wilcox
(1995, 2002) suggested that 20% trimming should be
used. The effective sample size becomes h = n – 2g.
Then the sample trimmed mean is

An estimate of the standard error of the trimmed mean
is based on the Winsorized mean and Winsorized sum
of squares. The sample Winsorized mean is

and the sample Winsorized sum of squared deviations
is

Accordingly, the sample Winsorized variance is
SSDw/(n–1) and the squared standard error of the
trimmed mean is estimated as (Staudte & Sheather,
1990)

Error Degrees of Freedom νWt

When Using Trimmed Means

Dayton’s (1998) Model-Testing
Approach with Akaike’s (1974)
Information Criterion

According to Akaike’s (1974) Information Crite-
rion, the model having the minimum criterion is re-
tained as the most probable population mean configu-
ration, where
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is the estimated sample mean for the jth group
(given the hypothesized population mean configura-
tion for the mth model), SSW is the ANOVA pooled
within group sum of squares, and q is the degrees of
freedom for the model.

For heterogeneous variances, Akaike’s (1974) In-
formation Criterion is:

where S is the biased variance (i.e., SS/N) for the jth
group, substituting the estimated group mean (given
the hypothesized mean configuration for the mth
model) for the actual group mean in the calculation of
the variance.

Simple Main-Effect Testing

In a two-way layout consisting of r rows and c col-
umns, let µij denote the mean response of the cell in
row i and column j. Interaction is said to exist if the pat-
tern of differences among the means of the columns
differs from row to row and equivalently if the pattern
of differences among the means of the rows differs
from column to column. The presence of interaction
can be detected as nonparallel traces in a standard in-
teraction plot, or more formally as a significant F test
for interaction in an analysis of variance.

When interaction is present and the levels of the fac-
tors are qualitative (rather than quantitative), one can-
not compare the column means averaged over the r
rows (equivalently, the row means averaged over the c
columns). In this situation it would be incorrect to em-
ploy the usual Tukey procedure to detect pairwise col-
umn differences. Instead, a correct analysis covering
the simultaneous comparison of all simple effects con-
sists of examining the simple effects in each row, that
is, pairwise cell mean differences of the form µij – µij′.
These are all c(c – 1)/2 pairwise mean differences in
each of rows i = 1,2, …, r, or rc(c – 1)/2 comparisons in
all. If one wants to control the FWE at α for this
superfamily, an extension of the Tukey procedure to
handle simple effect testing was given by Copenhaver
and Holland (1988) for the case of balanced sampling
and extended by Cheung and Chan (1996) to situations
with unbalanced sampling (heterogeneous cell sample
sizes).

Appendix B

Below we include the SAS (1999) syntax for our hypo-
thetical data set.

***DATA INPUT***;

DATA;

INPUT IV DV;
CARDS;

1.00 1.07
1.00 2.27

5.00 2.94
5.00 2.69

;

*** REGWQ MULTIPLE COMPARISON
PROCEDURE***;

PROC GLM;
CLASS IV;
MODEL DV=IV;
CONTRAST ’1V2’ IV 1 -1 0 0 0;
CONTRAST ’1V3’ IV 1 0 -1 0 0;
CONTRAST ’1V4’ IV 1 0 0 -1 0;
CONTRAST ’1V5’ IV 1 0 0 0 -1;
CONTRAST ’2V3’ IV 0 1 -1 0 0;
CONTRAST ’2V4’ IV 0 1 0 -1 0;
CONTRAST ’2V5’ IV 0 1 0 0 -1;
CONTRAST ’3V4’ IV 0 0 1 -1 0;
CONTRAST ’3V5’ IV 0 0 1 0 -1;
CONTRAST ’4V5’ IV 0 0 0 1 -1;
MEANS IV/REGWQ;

RUN;

*** TUKEY’S HSD PROCEDURE WITH
ADJUSTED P-VALUES ***;

PROC GLM;
CLASS IV;
MODEL DV=IV;
CONTRAST ’1V2’ IV 1 -1 0 0 0;
CONTRAST ’1V3’ IV 1 0 -1 0 0;
CONTRAST ’1V4’ IV 1 0 0 -1 0;
CONTRAST ’1V5’ IV 1 0 0 0 -1;
CONTRAST ’2V3’ IV 0 1 -1 0 0;
CONTRAST ’2V4’ IV 0 1 0 -1 0;
CONTRAST ’2V5’ IV 0 1 0 0 -1;
CONTRAST ’3V4’ IV 0 0 1 -1 0;
CONTRAST ’3V5’ IV 0 0 1 0 -1;
CONTRAST ’4V5’ IV 0 0 0 1 -1;
MEANS IV/PDIFF ADJUST=TUKEY;

RUN;

*** BOOTSTRAP MULTIPLE COMPARISON
PROCEDURE***;

PROC MULTTEST BOOTSTRAP SEED=121211
N=50000;
CLASS IV;
TEST MEAN(DV);
CONTRAST ’1V2’ 1 -1 0 0 0;
CONTRAST ’1V3’ 1 0 -1 0 0;
CONTRAST ’1V4’ 1 0 0 -1 0;
CONTRAST ’1V5’ 1 0 0 0 -1;
CONTRAST ’2V3’ 0 1 -1 0 0;
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CONTRAST ’2V4’ 0 1 0 -1 0;
CONTRAST ’2V5’ 0 1 0 0 -1;
CONTRAST ’3V4’ 0 0 1 -1 0;
CONTRAST ’3V5’ 0 0 1 0 -1;
CONTRAST ’4V5’ 0 0 0 1 -1;
ODS SELECT CONTINUOUS PVALUES;

RUN;

*** STEP-DOWN BOOTSTRAP MULTIPLE
COMPARISON PROCEDURE***;

PROC MULTTEST STEPBOOT SEED=121211
N=50000;
CLASS IV;
TEST MEAN(DV);
CONTRAST ’1V2’ 1 -1 0 0 0;
CONTRAST ’1V3’ 1 0 -1 0 0;
CONTRAST ’1V4’ 1 0 0 -1 0;
CONTRAST ’1V5’ 1 0 0 0 -1;
CONTRAST ’2V3’ 0 1 -1 0 0;
CONTRAST ’2V4’ 0 1 0 -1 0;
CONTRAST ’2V5’ 0 1 0 0 -1;
CONTRAST ’3V4’ 0 0 1 -1 0;
CONTRAST ’3V5’ 0 0 1 0 -1;
CONTRAST ’4V5’ 0 0 0 1 -1;
ODS SELECT CONTINUOUS PVALUES;

RUN;

*** PERMUTATION RESAMPLING MULTIPLE
COMPARISON PROCEDURE***;

PROC MULTTEST PERMUTATION SEED=121211
N=50000;
CLASS IV;
TEST MEAN(DV);
CONTRAST ’1V2’ 1 -1 0 0 0;
CONTRAST ’1V3’ 1 0 -1 0 0;
CONTRAST ’1V4’ 1 0 0 -1 0;
CONTRAST ’1V5’ 1 0 0 0 -1;
CONTRAST ’2V3’ 0 1 -1 0 0;
CONTRAST ’2V4’ 0 1 0 -1 0;
CONTRAST ’2V5’ 0 1 0 0 -1;
CONTRAST ’3V4’ 0 0 1 -1 0;
CONTRAST ’3V5’ 0 0 1 0 -1;
CONTRAST ’4V5’ 0 0 0 1 -1;
ODS SELECT PVALUES;

RUN;

*** BH MULTIPLE COMPARISON PROCEDURE
WITH ADJUSTED P-VALUES***;

DATA ONE;
INPUT TEST PVAL;
DATALINES;
1 .0917
2 .0003
3 .0001
4 .0001
5 .0422
6 .0015

7 .0001
8 .2314
9 .0118
10 .1760
;

DATA TWO;
SET ONE;
RENAME PVAL=RAW_P;
PROC MULTTEST PDATA=ONE FDR OUT=OUTP;
PROC SORT DATA=OUTP OUT=OUTP;
BY RAW_P;
PROC PRINT DATA=OUTP;
RUN;

Appendix C
SPSS/SAS Program for Trimmed

Means Results

Note: To obtain results, we used the following proce-
dure. We created a data set with “raw” data that had the
desired properties. That is, we made all the cases in a
given group equal to the trimmed mean, except for two
that were above (the last case in our data set) and below

the mean (the first case in our data set) by ;

where n represents the number of participants before

trimming and is the Winsorized variance). If you
have large sample sizes, you can shortcut this method
by using a weighting variable to use just one case with
the mean value, with a weight of n – 2. The deviation
cases would have weights of 1 (This method was sug-
gested by David Nichols, Principal Support Statisti-
cian and Manager of Statistical Support, SPSS Inc.).

***After computing the trimmed mean and Winsor-
ized variance for each group, the following data was
read into an SPSS data file (via their drop down menu
system) and then was used to compute Welch (1938)
nonpooled test statistics and p values (referred to in
SPSS as “Equal Variances Not Assumed”) ***

IV DV

1.00 -.15
1.00 1.49
1.00 1.49
1.00 1.49
1.00 1.49
1.00 1.49
1.00 1.49
1.00 1.49
1.00 1.49
1.00 1.49
1.00 1.49
1.00 3.13
2.00 .04
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2.00 1.91
2.00 1.91
2.00 1.91
2.00 1.91
2.00 1.91
2.00 1.91
2.00 1.91
2.00 1.91
2.00 1.91
2.00 1.91
2.00 3.78
3.00 1.63
3.00 2.53
3.00 2.53
3.00 2.53
3.00 2.53
3.00 2.53
3.00 2.53
3.00 2.53
3.00 2.53
3.00 2.53
3.00 2.53
3.00 3.44
4.00 .91
4.00 2.93
4.00 2.93
4.00 2.93
4.00 2.93
4.00 2.93
4.00 2.93
4.00 2.93
4.00 2.93
4.00 2.93
4.00 2.93
4.00 4.95
5.00 1.46
5.00 3.15
5.00 3.15
5.00 3.15
5.00 3.15
5.00 3.15
5.00 3.15
5.00 3.15
5.00 3.15

5.00 3.15
5.00 3.15
5.00 4.84

ONEWAY DV BY IV
/CONTRAST 1 -1 0 0 0
/CONTRAST 1 0 -1 0 0
/CONTRAST 1 0 0 -1 0
/CONTRAST 1 0 0 0 -1
/CONTRAST 0 1 -1 0 0
/CONTRAST 0 1 0 -1 0
/CONTRAST 0 1 0 0 -1
/CONTRAST 0 0 1 -1 0
/CONTRAST 0 0 1 0 -1
/CONTRAST 0 0 0 1 -1.

***The following SAS program was then used to com-
pute adjusted Benjamini and Hochberg p values from
the raw p values generated previously***

DATA THREE;
INPUT TEST PVAL;
DATALINES;
1 .18418
2 .00030
3 .00019
4 .00001
5 .02746
6 .00646
7 .00062
8 .16306
9 .01788
10 .50477
;
DATA FOUR;
SET THREE;
RENAME PVAL=RAW_P;
PROC MULTTEST PDATA=ONE FDR OUT=OUTP;
PROC SORT DATA=OUTP OUT=OUTP;
BY RAW_P;
PROC PRINT DATA=OUTP;
RUN;
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