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Multiplicity Control in Structural
Equation Modeling

Robert A. Cribbie
York University

Researchers conducting structural equation modeling analyses rarely, if ever, control
for the inflated probability of Type I errors when evaluating the statistical signifi-
cance of multiple parameters in a model. In this study, the Type I error control, power
and true model rates of famsilywise and false discovery rate controlling procedures
were compared with rates when no multiplicity control was imposed. The results in-
dicate that Type I error rates become severely inflated with no multiplicity control,
but also that familywise error controlling procedures were extremely conservative
and had very little power for detecting true relations. False discovery rate controlling
procedures provided a compromise between no multiplicity control and strict family-
wise error control and with large sample sizes provided a high probability of making
correct inferences regarding all the parameters in the model.

Researchers in the educational and behavioral sciences are increasingly turning to
structural equation modeling (SEM) to answer complex multivariate hypotheses.
This increase has been triggered by advances in SEM software and the availability
of Web- and text-based resources for conducting SEM analyses. Although many
issues surrounding the application of SEM have received dedicated attention in the
literature (e.g., approximate fit indexes, estimation methods, assumption viola-
tion), research into the issue of appropriate multiplicity control when testing multi-
ple parameters in SEM has been scarce.

When researchers are faced with evaluating the adequacy of a particular model,
they are often interested in both the overall fit of the model and which of the pro-
posed relations (parameters) in the model are (or are not) important. With respect
to determining the importance of individual parameters, two alternatives have
dominated the empirical literature, falling under the general categories of explor-
atory or confirmatory parameter investigations.
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Exploratory parameter investigations utilize residual statistics and sequential
model modification indexes to identify which parameters to remove from or add to
the model to improve the fit of the model to the sample data. This option is accept-
able when the analysis is designated as exploratory and the goal of the analysis is
only to derive or improve a theoretical model for future evaluation. However, re-
searchers should be aware that (a) changes to the model are data driven and do not
provide any substantive evidence about the validity of the model, (b) the probabil-
ity of making decision errors is related to the number of model modifications and
the criteria adopted for declaring model modifications statistically significant
(Green & Babyak, 1997; Hancock, 1999; MacCallum, 1986; MacCallum,
Roznowski, & Necowitz, 1992), and (c) specification searches can be unreliable
detectors of specification errors (e.g., Hutchinson, 1993; Kaplan, 1988;
MacCallum, 1986; MacCallum et al., 1992; Silvia & MacCallum, 1988).

Confirmatory parameter investigations (assuming a satisfactory fit of the model
to the sample data) evaluate the significance of each hypothesized parameter at a
specified significance level (α), declaring statistically significant parameters im-
portant and nonsignificant parameters unimportant, within the framework of the
model. This strategy is acceptable only if the researcher is willing to assume that
no Type I error inflation will arise when multiple hypotheses are tested.

The current state of multiplicity control in confirmatory SEM can be summa-
rized very easily: There is no multiplicity control! However, that is not to say that
there is no discussion of the issue. A review of the archives of SEMNET, the online
SEM network group, produced several comments regarding multiplicity control in
SEM. For example:

• “I am wondering if you should use a Bonferroni correction procedure for in-
terpreting critical ratios (also called t tests). For example, if 10 estimates are
produced, perhaps you should use a significance level of .005 for any one pa-
rameter” (Burns, 1996).

• “Many students regrettably pick out the ‘significant’ results and report only
those. One pragmatic approach is to apply the Bonferroni correction when
reporting only N out of M tests applied” (Reese, 2001).

• “My statistics professor on my dissertation committee asked me how does
AMOS control for Type I error (likelihood of finding significant relation-
ships when running multiple analyses on the same data). He asked is it doing
a Bonferroni adjustment, or what is it doing? I will need to address this in my
dissertation revision” (Moynihan, 2002).

• “I was talking to my supervisors (who have never used SEM before) and they
argued that you could expect 1 in 20 correlations between variables to be sig-
nificant and if you have more than 20 paths that you could expect that one of
those paths would be significant even if there was no correlation between the
variables. They wondered if it makes sense to apply a Bonferroni correction
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on the p values of your estimated parameters to account for this possibility”
(Van der Heijden, 2005).

Popular responses against multiplicity control in SEM research usually fall un-
der one of two categories: (a) the issues surrounding multiplicity control in SEM
are identical to the issues raised in other forms of correlational analysis (where
only very rarely is multiplicity control invoked when multiple parameters or corre-
lations are evaluated); or (b) the parameters in SEM models are correlated so mul-
tiplicity adjustments would be too conservative (e.g., Mulaik, 2004; Owen, 2004;
Ronis, 2002). However, the arguments in support of multiplicity control are ex-
tremely convincing. First, there have been many (mostly ignored) warnings con-
cerning multiplicity control in correlational research (e.g., Collis & Rosenblood,
1985; Crosbie, 1986; Cudeck & O’Dell, 1994; Larzelere & Mulaik, 1977) and yes,
the same issues apply to SEM research. Second, the hypotheses tested in SEM are
often more confirmatory in nature, and regarded as much more definitive, than
other correlational analyses and therefore warrant significantly more attention.
Third, the fact that parameters in a model are often highly intercorrelated does af-
fect the conservativeness of Type I error controlling procedures, but because re-
searchers are typically unaware of the degree to which parameters within their
model are correlated, and the correlations between parameter estimates decrease
when a model is well identified, researchers must be conscious of the possible risk
of falsely declaring parameters significant. MacCallum (1995) added that al-
though models with several correlated parameters tend to fit the data well, they are
often not disconfirmable and thus make finding a good fit meaningless. Finally, in
a preliminary study of the impact of interpreting the significance of several param-
eters in a structural model on the inflation of Type I errors, Cribbie (2000) con-
cluded that the Type I error inflation was too extreme to ignore and that some form
of multiplicity control was necessary.

An important issue that frequently arises in the application of multiplicity con-
trol is what family or set of parameters in which to apply the control. The goal of
specifying a family of hypotheses is to select a set that is not so large that it is im-
possible to ever reject any hypothesis, yet is not so small that it does not provide
adequate control of Type I errors. Further, a family should consist of those tests
that are related in terms of their intended use (Hochberg & Tamhane, 1987). In this
research, Type I error control was applied over all parameters in the structural
model, which often represent the important hypotheses within the model. How-
ever, there is no reason that multiplicity control could not also be imposed in other
parts of the model, and may be extremely relevant in research where the measure-
ment model is of utmost importance (e.g., confirmatory factor analysis).

With respect to multiplicity control, there are several different units of analy-
sis (i.e., error rates) that have been proposed and that vary in how strictly they
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control the rate of Type I errors. Although the majority of discussion in the liter-
ature has focused on the familywise error rate versus no multiplicity control
(e.g., Ryan, 1959; Toothaker, 1991; Tukey, 1953), other error rates, such as the
false discovery rate (FDR; Benjamini & Hochberg, 1995), have also been pro-
posed. When no multiplicity control is imposed, all tests of significance are con-
ducted at α (i.e., the per-test Type I error rate). The advantages of imposing no
control include consistency (regardless of the number of tests being conducted,
the Type I error rate for each test is held constant) and power, and the disadvan-
tage is that there is a potential increase in the overall Type I error rate when mul-
tiple tests of significance are performed. The familywise error rate is defined as
the probability of falsely rejecting one or more hypotheses in a family of hypoth-
eses. The main advantage of familywise error control is that the probability of
committing a Type I error does not increase as more tests of significance are
conducted, whereas the disadvantage is that per-test power can become severely
deflated as the number of hypothesis tests increases. Finally, Benjamini and
Hochberg (1995) presented a compromise between no multiplicity control and
strict familywise error control, namely the FDR. The FDR is defined as the ex-
pected ratio (Q) of the number of erroneous rejections (V) to the total number of
rejections (R = V + S), where S represents the number of true rejections
(Benjamini, Hochberg, & Kling, 1994). Therefore, E (Q) = E (V / (V + S)) = E
(V / R). The relation between FDR control and other error rates was summarized
by Benjamini et al. (1994). If all null hypotheses are true, the FDR equals the
familywise error rate. On the other hand, if some of the null hypotheses are
false, the FDR is less than the familywise error rate, which can result in a signif-
icant increase in power for a procedure that controls the FDR. Keselman,
Cribbie, and Holland (2002) demonstrated that the FDR procedure provides ex-
cellent power (relative to familywise error controlling procedures) in experi-
ments with large family sizes (e.g., testing all correlations in a 16 × 16 matrix),
while still providing acceptable Type I error control.

Therefore, the purpose of this investigation is to explore the application of mul-
tiplicity control within the framework of SEM and compare available methods for
multiplicity control with respect to Type I error control and power.

METHOD

A Monte Carlo study was used to compare the Type I error control, per parame-
ter power, and true model rates of the no multiplicity control approach with that
of two familywise error controlling procedures and two FDR controlling proce-
dures.
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Multiple Testing Procedures

Bonferroni (Bonf). In this well-known procedure, the p values correspond-
ing to the k parameter estimates are compared to an αpp = α/k, where αpp is the
per-parameter Type I error rate and α is a predetermined, acceptable, familywise
error rate. The Bonferroni method controls the familywise error rate at α by declar-
ing any parameter with p ≤ αpp significant.

Hochberg’s (1988) sequentially acceptive step-up Bonferroni (Hoch).
In this familywise error controlling procedure, the p values corresponding to the k
parameter estimates are ordered from smallest to largest. Then, for any I = k, k – 1,
… , 1, if pi ≤ α/(k – I + 1), the Hochberg procedure rejects all parameters associated
with pi′ (I′ ≤ I). Therefore, one begins by testing the largest p value, pk, and declares
all parameters significant if pk ≤ α. If pk > α then the parameter associated with pk

is declared nonsignificant and one proceeds to compare pk – 1 to α/2. If pk – 1 ≤ α/2
then all parameters associated with pi (I = k – 1, … , 1) are declared significant, but
if pk – 1 > α/2 then the parameter associated with pk – 1 is declared nonsignificant
and one proceeds to compare pk – 2 to α/3, and so on.

Benjamini and Hochberg’s (1995) false discovery rate controlling
step-up Bonferroni (FDR). Like Hochberg’s step-up procedure, the p values
corresponding to the k parameter estimates are ordered from smallest to largest.
Then, for any I = k, k – 1, … , 1, if pi ≤ α(I/k), the FDR procedure rejects all param-
eters associated with pi (I′ ≤ I). Therefore, one begins by testing the largest p value,
pk, and declares all parameters significant if pk ≤ α. If pk > α then the parameter as-
sociated with pk is declared nonsignificant and one proceeds to compare pk – 1 to
α(k – 1/k). If pk – 1 ≤ α(k – 1/k) then all parameters associated with pi (I = k – 1, … ,
1) are declared significant, but if pk – 1 > α(k – 1/k) then the parameter associated
with pk – 1 is declared nonsignificant and one proceeds to compare pk – 2 to α(k – 2/
k), and so on. Benjamini and Yekutieli (2001) provided evidence that this proce-
dure provides strong FDR control under the type of parameter dependencies en-
countered in latent variable models.

Benjamini and Yekutieli’s (2001) FDR (FDR–BY). Benjamini and Yekutieli
(2001) proposed a modification to the original FDR procedure that would be more
conservative and control the FDR across any parameter dependence structure (re-
ferred to here as the FDR–BY). Like the original FDR procedure, the p values cor-
responding to the k parameter estimates are ordered from smallest to largest. Then,
for any I = k, k – 1, … , 1, if pi ≤ α[I / (k Σr 1/r), r = 1, …, k, the FDR–BY procedure
rejects all parameters associated with pi′ (I′ ≤ I).
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The models investigated in this article were derived from studies by Trierweiler,
Eid, and Lischetzke (2002, Model A; see Figure 1) and Dunkley, Zuroff, and
Blankstein (2003, Model B; see Figure 2). In the Trierweiler et al. (2002) study, the
authors were interested in exploring relations between emotional expressions
(love, joy, fear, anger, shame, sadness) and the Big Five personality dimensions
(extraversion, agreeableness, conscientiousness, neuroticism, intellect). In the
Dunkley et al. (2003) study, the authors were interested in exploring predictors of
negative and positive affect, including hassles, avoidant coping, perceived social
support, self-critical perfectionism, personal standards perfectionism, event stress,
and problem-focused coping. Empirical models were utilized to provide a theoreti-
cal framework for exploring issues related to assessing multiple hypotheses, and
these particular models were selected because there were a moderate to large num-
ber of constructs that would likely be familiar to most readers. Model A had 179 df
with 30 hypothesis tests in the structural model and Model B had 150 df with 20
hypothesis tests in the structural model. Type I error control was evaluated with re-
spect to familywise error rates (i.e., the probability of declaring at least one null pa-
rameter statistically significant). Per-parameter power was evaluated as the aver-
age proportion of nonzero parameters declared statistically significant. The true
model rate was evaluated as the proportion of simulations in which the true under-
lying model configuration was recovered (i.e., all nonzero parameters were de-
clared statistically significant and all null parameters were declared not statisti-
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FIGURE 1 The first theoretical model used in the Monte Carlo study (Model A), based on a
study by Trierweiler, Eid, and Lischetzke (2002).



cally significant). Cribbie (2003) and Cribbie and Keselman (2003) previously
used the true model rate to compare the Type I error control and power of multiple
comparison procedures in a mean comparison framework. Although the true
model rate is an extremely conservative criterion, it is recommended as a measure
of the performance of multiple testing procedures because it simultaneously inves-
tigates Type I error control and power.

Three other variables were investigated in this study: (a) sample size (N = 200
and N = 1,000), (b) type of misspecification, and (c) number of misspecifications
in the model (6 or 12 for Model A; 5 or 10 for Model B). The sample sizes were se-
lected to be representative of those encountered by applied researchers. Mis-
specifications were established by estimating (freeing) paths between variables in
the model that are not related in the true model. In addition to a no misspecification
condition, two forms of misspecification were investigated in this study: (a) de-
pendent misspecification, where all misspecified paths originate from one (in the
case of 5 or 6 misspecifications) or two (in the case of 10 or 12 misspecifications)
of the latent variables; or (b) independent misspecification, where the misspecified
paths were as unrelated as possible. In deriving an implied covariance matrix, pop-
ulation factor variances were set at 1.0, interfactor covariances were set at .18, fac-
tor loadings were set to .80, and error variances were set to .36 (resulting in unit
variance for the observed variables). Misspecifications (following the format de-
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FIGURE 2 The second theoretical model used in the Monte Carlo study (Model B), based on
a study by Dunkley, Zuroff, and Blankstein (2003). Note: avoid coping = avoidant coping; per
soc sup = perceived social support; slf crt perf = self-critical perfectionism; per stds perf = per-
sonal standards perfectionism; prb foc coping = problem-focused coping.



scribed earlier) were established by fixing the covariances between observed vari-
ables loading on separate, but theoretically correlated, factors to 0 in the model
specified covariance matrix. To summarize the design of the study, there are two
separate models, two sample size conditions, two types of misspecification (in ad-
dition to a case where no misspecifications were present), and two conditions for
the number of misspecifications.

SEM analyses were performed using SAS PROC CALIS (SAS Institute, 1999)
and preliminary analyses were conducted to determine the fit of the models to the
data using the comparative fit index (CFI) and root mean square error of approxi-
mation (RMSEA). One thousand replications were performed for each condition
using a nominal significance level of .05.

RESULTS

Fit Indexes

The fit indexes under each of the experimental conditions are presented in Table 1.
The fit of the model to the sample data was excellent for both models under all con-
ditions investigated in this study, with mean CFI values greater than .99 and
RMSEA values less than .02. An interesting finding was that the fit of the models
remained excellent even when several of the parameters in the structural model
were misspecified.
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TABLE 1
Average Fit Indexes for Each Model as a Function of Sample Size,

Misspecification Structure, and Number of Misspecifications

Type (and Number)
of Misspecifications

Sample Size

N = 200 N = 1,000

CFI RMSEA CFI RMSEA

Model A
No misspecification .991 .013 .999 .005
Dependent (6) .992 .012 .999 .004
Independent (6) .993 .012 .999 .005
Dependent (12) .994 .010 .999 .003
Independent (12) .993 .011 .999 .004

Model B
No misspecification .993 .011 .999 .005
Dependent (5) .993 .011 .999 .005
Independent (5) .993 .011 .999 .004
Dependent (10) .994 .010 .999 .004
Independent (10) .993 .010 .999 .004

Note. CFI = comparative fit index; RMSEA = root mean square error of approximation.



Familywise Error Rates

Familywise error rates for each of the multiple testing procedures, under each of
the testing conditions, are presented in Table 2. As expected, the familywise
error rates when no multiplicity control was imposed significantly exceeded the
per-parameter alpha of .05, and were larger than the rates for any of the re-
maining procedures. The familywise rates when no multiplicity control was im-
posed ranged from .205 for 6 dependent misspecifications and N = 1,000 to .616
for 12 independent misspecifications and N = 200. The familywise error rates for
the FDR procedure were greater than for the remaining procedures, with the
Bonf approach having the most conservative rates. The FDR–BY procedure
was extremely conservative with a small sample size, but had larger rates than
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TABLE 2
Familywise Error Rates for Each Multiple Testing Procedure
as a Function of Sample Size, Misspecification Structure,

and Number of Misspecifications

Type (and Number)
of Misspecifications NC Bonf Hoch FDR FDR–BY

N = 200
Model A

Dependent (6) .243 .007 .007 .064 .005
Independent (6) .348 .011 .012 .104 .007
Dependent (12) .287 .007 .009 .069 .004
Independent (12) .616 .069 .073 .213 .043

Model B
Dependent (5) .309 .016 .017 .077 .011
Independent (5) .331 .016 .021 .084 .011
Dependent (10) .570 .039 .039 .109 .012
Independent (10) .582 .045 .049 .110 .020

N = 1,000
Model A

Dependent (6) .205 .006 .029 .178 .041
Independent (6) .295 .005 .042 .249 .060
Dependent (12) .306 .011 .030 .197 .052
Independent (12) .468 .012 .032 .335 .072

Model B
Dependent (5) .228 .009 .038 .171 .042
Independent (5) .253 .009 .046 .202 .055
Dependent (10) .454 .019 .034 .268 .068
Independent (10) .436 .023 .046 .259 .076

Note. NC = no familywise error control; Bonf = Bonferroni; Hoch = Hochberg; FDR = false dis-
covery rate; FDR–BY = Benjamin & Yekutieli’s conservative FDR; Dependent = misspecifications
from the same latent variable(s); Independent = misspecifications not all from the same latent vari-
able(s).



the familywise error controlling procedures (Bonf, Hoch) with a large sample
size.

Per-Parameter Power

Per-parameter power rates for each of the multiple testing procedures, under each
of the testing conditions, are presented in Table 3. Per-parameter power rates when
no multiplicity control was imposed were, as expected, larger than for any of the
remaining procedures in any condition, ranging from .242 to .527 for N = 200 and
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TABLE 3
Per-Parameter Power Rates for Each Multiple Testing Procedure

as a Function of Sample Size, Misspecification Structure,
and Number of Misspecifications

Type (and Number)
of Misspecifications NC Bonf Hoch FDR FDR–BY

N = 200
Model A

No misspecification .527 .083 .089 .353 .074
Dependent (6) .359 .054 .056 .195 .039
Independent (6) .471 .071 .075 .240 .049
Dependent (12) .242 .035 .036 .100 .021
Independent (12) .383 .055 .057 .153 .032

Model B
No misspecification .455 .080 .086 .251 .059
Dependent (5) .427 .072 .076 .176 .045
Independent (5) .429 .073 .077 .180 .045
Dependent (10) .398 .067 .069 .012 .034
Independent (10) .406 .070 .073 .130 .038

N = 1,000
Model A

No misspecification .996 .911 .995 .996 .980
Dependent (6) .884 .640 .680 .714 .686
Independent (6) .995 .886 .956 .993 .969
Dependent (12) .834 .486 .509 .566 .519
Independent (12) .991 .854 .906 .984 .945

Model B
No misspecification .992 .887 .990 .992 .966
Dependent (5) .987 .861 .930 .982 .944
Independent (5) .988 .854 .926 .983 .942
Dependent (10) .982 .829 .870 .966 .901
Independent (10) .984 .824 .866 .968 .895

Note. NC = no familywise error control; Bonf = Bonferroni; Hoch = Hochberg; FDR = false dis-
covery rate; FDR–BY = Benjamin & Yekutieli’s conservative FDR; Dependent = misspecifications
from the same latent variable(s); Independent = misspecifications not all from the same latent vari-
able(s).



.834 to .996 for N = 1,000. Per-parameter power rates for the FDR procedure, rang-
ing from .100 to .353 for N = 200 and .566 to .996 for N = 1,000, were larger than
for the remaining familywise error controlling procedures (Bonf, Hoch), although
the differences were less pronounced in the large sample size condition where ceil-
ing effects limited the amount of variability in the rates. The Hoch procedure was
slightly more powerful than the Bonf procedure in all conditions investigated.
Per-parameter power rates for the FDR–BY procedure were less than those for the
FDR, but larger than for the Bonf and Hoch familywise error controlling proce-
dures with a large sample size. For Model A, power rates when there were depend-
ent misspecifications were significantly depressed relative to the rates for inde-
pendent misspecifications, whereas for Model B (where the parameter structure is
less defined) power rates when there were dependent misspecifications were very
similar to rates when there were independent misspecifications.

True Model Rates

True model rates for each of the multiple testing procedures for N = 1,000 are
presented in Table 4. The true model rates investigate the performance of multi-
ple testing procedures by simultaneously incorporating both Type I error control
and power (in other words to detect the true model means that no Type I or Type
II errors were committed). True model rates for N = 200 were 0, regardless of
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TABLE 4
True Model Rates for Each Multiple Testing Procedure for N = 1,000

by Misspecification Structure and Number of Misspecifications

Type (and Number)
of Misspecifications NC Bonf Hoch FDR FDR–BY

Model A
No misspecification .874 .046 .874 .874 .530
Dependent (6) .443 .057 .278 .451 .335
Independent (6) .624 .054 .342 .636 .446
Dependent (12) .204 .056 .149 .273 .243
Independent (12) .450 .062 .191 .498 .353

Model B
No misspecification .850 .089 .850 .850 .515
Dependent (5) .631 .114 .366 .637 .418
Independent (5) .625 .108 .349 .628 .401
Dependent (10) .461 .146 .258 .518 .343
Independent (10) .507 .144 .252 .549 .331

Note. NC = no familywise error control; Bonf = Bonferroni; Hoch = Hochberg; FDR = false dis-
covery rate; FDR–BY = Benjamin & Tekutieli’s conservative FDR; Dependent = misspecifications
from the same latent variable(s); Independent = misspecifications not all from the same latent vari-
able(s).



the number or type of misspecifications or the multiple testing procedure utilized
and are therefore not presented. For N = 1,000 and no misspecifications, the true
model rates of the no multiplicity control, FDR, and Hoch procedures were
equal (.874). When misspecifications were present, the true model rates of the
FDR procedure were larger than the rates of any of the other procedures across
all conditions, with rates ranging from .273 to .636 for Model A and .518 to .637
for Model B. The true model rates in the no multiplicity control condition were
slightly less than that of the FDR procedure, and the true model rates of the
FDR–BY procedure were larger than that of the Hoch and Bonf procedures.
True model rates for the Bonf procedure were extremely low, reaching a maxi-
mum of .146.

DISCUSSION

Researchers conducting SEM analyses rarely (or possibly never) impose any
type of multiplicity control when evaluating the significance of multiple parame-
ters. However, past research has shown that even when dependencies among the
parameters exist, familywise error rates are expected to be inflated when multi-
ple null parameters are estimated (e.g., Larzelere & Mulaik, 1977). This article
looked at the effects of evaluating the statistical significance of multiple parame-
ters in the structural model and the results confirm that Type I error inflation be-
comes extreme when no multiplicity control is imposed. The Type I error infla-
tion is slightly reduced when dependencies among parameters exist, although the
rates still greatly exceed the nominal alpha level. Is the rate of Type I error infla-
tion excessive? That is a difficult question, but I believe the point is that if a re-
searcher believes that his or her probability of erroneously declaring any param-
eter significant is alpha (say .05), then any inflation of the Type I error rate
above .05 would be problematic and for most researchers the .20 to .60 probabil-
ities of erroneously declaring a parameter significant reported in this article
would likely be alarming.

This research confirms that the original FDR procedure (Benjamini &
Hochberg, 1995) provides a compromise position between no multiplicity control
and strict familywise error control, providing more power than familywise error
controlling procedures but more Type I error control than when no multiplicity
control is imposed. Further, the results of this investigation demonstrate the ex-
treme conservativeness of the Bonferroni procedure relative to the remaining pro-
cedures. In fact, besides ease of computation, there is no reason to recommend the
Bonferroni procedure even if strict Type I error control is desired, given that other
familywise error controlling procedures (e.g., the Hochberg procedure used in this
study) can provide good Type I error control and can be significantly more power-
ful than the Bonferroni procedure. The FDR procedure due to Benjamini and
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Yekutieli (2001) was extremely conservative with small sample sizes, but provided
good Type I error control with larger sample sizes and was more powerful than the
Bonferroni or Hochberg procedures. In fact, although the procedure is not de-
signed to control the familywise error rate at alpha, the familywise rates never ex-
ceeded .076 in any of the conditions investigated in this study.

An important component to this investigation was an evaluation of the true
model rates of the multiple testing procedures. The true model rates, or the proba-
bility of making correct statistical decisions regarding all parameters in the struc-
tural model, were largest for the more liberal Type I error controlling strategies.
More specifically, the true model rates were highest when the original Benjamini
and Hochberg (1995) FDR procedure was utilized (although in most cases the rates
were only slightly greater than that of the no familywise error control approach).
The true model rates of the more conservative FDR controlling procedure due to
Benjamini and Yekutieli (2001) were very respectable when sample sizes were
large, especially considering the strict Type I error control that was observed. The
true model rates also confirm that controlling the familywise error rate with the
conservative Bonferroni correction is not recommended and make it highly un-
likely that a researcher will uncover all of the true relations in the model.

An important limitation of this study was that only two models were consid-
ered. It will be important in future research to explore how the results of this study
extend to other types of models, which can obviously vary considerably in both the
nature of the model as well as the number of parameters estimated. A reviewer of
this article also pointed out that the reliability of the indicators was not varied, and
could possibly affect the results. Future studies should also investigate the effects
of indicator reliability on parameter error rates.

To summarize, the results of this investigation highlight that the Type I error in-
flation that occurs when multiple parameters are investigated in SEM can become
extreme, but also point out that the best methods for maximizing the probability of
making correct inferences regarding all parameters in the model are the most lib-
eral methods that result in the highest rates of Type I error. So how does this help in
making recommendations to researchers regarding multiplicity control in SEM?
First, consider the response of Mulaik (2004) to a researcher enquiring about
whether to adopt Bonferroni control when evaluating the significance of multiple
parameters in a model:

You do not ordinarily take an alpha level and divide it by the number of dependent
tests to perform to get an alpha-per-test. That could be too conservative. What the al-
pha-per-test should be based on is an initial risk expressed as a probability with
which one would be willing to accept making at least one type I error among the se-
ries of tests. The alpha-per-test is then the result of dividing alpha familywise by the
number k of tests to perform in the family or series. There is no absolute rule by
which one would select the alpha familywise. But it should be larger than the usual
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.05. Given many tests with an alpha-per-test of .05/k, it would be unduly conservative
in favor of accepting the null hypothesis over the series.

Mulaik’s response that a Bonferroni correction would be too conservative mirrors
the results of this study. Further, Mulaik’s suggestion that a familywise error rate
should be selected based on a risk with which one would be willing to accept mak-
ing at least one Type I error over all parameters is in line with the goals of this arti-
cle, but what familywise rate would we recommend to researchers (.10, .20, etc.)?

Given the findings of this research it is recommended that, instead of focusing
on selecting an appropriate elevated familywise error rate, that researchers main-
tain alpha at the desired level (e.g., .05), but adopt control of the FDR. If maximiz-
ing power is important then the original FDR procedure due to Benjamini and
Hochberg (1995) would be recommended, but if more strict Type I error control is
necessary the more conservative Benjamini and Yekutieli (2001) FDR controlling
procedure would be recommended. Either of these methods will provide research-
ers with more Type I error control than when no multiplicity control is imposed,
but more power than when a familywise error controlling procedure is adopted.
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