
   

NEGLIGIBLE INTERACTION PERFORMANCE     1 
 

 

 

 

 

 

Testing for Negligible Interaction: A Coherent and Robust Approach 

 

Robert A. Cribbie, Chantal Ragoonanan, & Alyssa Counsell  

Quantitative Methods Program 

Department of Psychology 

York University 

 

 

 

 

 

*Correspondence should be addressed to Robert Cribbie, Department of Psychology, York University, Toronto, 

ON, Canada M3J 1P3 (e-mail: cribbie@yorku.ca)  

mailto:cribbie@yorku.ca


   

NEGLIGIBLE INTERACTION PERFORMANCE     2 
 

Abstract 

Researchers often want to demonstrate a lack of interaction between two categorical predictors on an 

outcome. To justify a lack of interaction, researchers typically accept the null hypothesis of no 

interaction from a conventional analysis of variance (ANOVA). This method is inappropriate as failure 

to reject the null hypothesis does not provide statistical evidence to support a lack of interaction. This 

study proposes a bootstrap-based intersection-union test for negligible interaction that provides coherent 

decisions between the omnibus test and post hoc interaction contrast tests and is robust to violations of 

the normality and variance homogeneity assumptions. Further, a multiple comparison strategy for testing 

interaction contrasts following a nonsignificant omnibus test is proposed. Our simulation study 

compared the Type I error control, omnibus power and per-contrast power of the proposed approach to 

the noncentrality-based negligible interaction test of Cheng and Shao (2007). For 2 x 2 designs, the 

empirical Type I error rates of the Cheng and Shao test were very close to the nominal α level when the 

normality and variance homogeneity assumptions were satisfied, however only our proposed 

bootstrapping approach was satisfactory under nonnormality and/or variance heterogeneity. In general a 

x b designs, although the omnibus Cheng and Shao test, as expected, is the most powerful, it is not 

robust to assumption violation and results in incoherent omnibus and interaction contrast decisions that 

are not possible with the intersection-union approach.  
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Testing for Negligible Interaction: A Coherent and Robust Approach 

 Psychological researchers are frequently interested in finding a lack of interaction between two 

or more variables on an outcome. A lack of interaction might be the primary hypothesis of the study or a 

lack of interaction may be necessary in order to justify removing an interaction term from a model or 

interpreting the main effects. For example, Paolieri, Lotto, Leoncini, Cubelli, and Job (2011) conducted 

a study investigating the process by which the congruency of target and distractor noun genders 

(congruent/incongruent) and ending identity (same distractor word ending/different distractor word 

ending) affect picture naming latencies. It was hypothesized and established that no interaction would 

occur between gender congruence and ending identity because the processing of the gender congruency 

and ending identity were expected to be independent.  

It is essential to recognize that the example above utilized a factorial analysis of variance test 

(ANOVA) in order to assess whether there was a lack of interaction. As has been extensively discussed 

in the quantitative methodology literature, conventional tests of mean differences or associations (e.g., 

factorial ANOVA F test) are not suitable for assessing a lack of relationship (e.g., Rogers, Howard, & 

Vessey, 1993; Wellek, 2010). More specifically, in the example described above, it is not acceptable to 

use non-significance of the interaction term from an ANOVA as evidence of no interaction. Our 

description of the study was not to criticize the authors, but to highlight the issue that applied researchers 

need an appropriate statistical tool to test for a lack of interaction. The current study will examine the 

test of negligible interaction due to Cheng and Shao (2007) and propose an alternative bootstrapping 

approach that extends this work in important directions. However, we must first describe the 

methodological difficulties with testing a lack of interactions before providing details on the tests. 
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Traditional Test for the Presence of an Interaction  

 The standard test for an interaction in a two-way ANOVA has the null hypothesis (𝐻0) of no 

interaction and alternative hypothesis (𝐻1) that there is an interaction. More formally, for discrete 

variables J, with levels j = 1, ..., a, and K, with levels k = 1, ..., b, the interaction null hypothesis is:  

Ho: βjj'kk' = 0 for all j,j' and k,k', j≠j', k≠k', 

where βjj'kk' = µjk - µjk' - µj'k + µj'k' and represents all 2 x 2 interactions subsumed within the omnibus a x b 

interaction. 

 When the research hypothesis relates to detecting an interaction, the objective is to reject the null 

hypothesis of no interaction. However, when attempting to establish no interaction, the goal is to retain 

the null hypothesis of no interaction. This goal is problematic because there is a lack of statistical 

evidence to support any conclusions when the null hypothesis of zero interaction is not rejected (Cheng 

& Shao, 2007), as “absence of evidence is not evidence of absence” (Altman & Bland, 1995). Further, 

power (to detect no interaction) would behave in the opposite direction expected, because in order to 

maximize power for not rejecting the null hypothesis, one would need to minimize, rather than 

maximize, the sample size. Additionally, it would be unlikely to find population interaction effects 

exactly equal to zero. Although the interaction effect may be small with no practical significance, it may 

not meet the strict requirement outlined in the null hypothesis (i.e., nil interaction). Thus, this calls for 

factorial independent group models to account for the methodological difficulties when attempting to 

detect a lack of association. More specifically, when the goal is to detect a lack of interaction, the null 

and alternate hypotheses of the traditional ANOVA must be reversed. An appropriate approach for this 

scenario is equivalence testing. 

Introduction to Equivalence Testing 
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 Equivalence testing is frequently used by biostatisticians who are interested in whether two drugs 

have an equivalent impact. However, equivalence testing is not restricted to the pharmacological field; it 

can be a beneficial statistical tool for the evaluation of many psychological hypotheses. For example, 

researchers may be interested in determining whether two means are equal (e.g., Cribbie, Gruman & 

Arpin-Cribbie, 2004; Rogers et al., 1993) or whether there is lack of association between variables (e.g., 

Goertzen & Cribbie, 2010; Mascha & Sessler, 2011; Robinson, Duursma & Marshall, 2005). 

Establishing a complete lack of association, however, is an unrealistic statistical goal because variables 

are rarely completely unrelated. With equivalence testing, the goal is not to demonstrate no relationship 

among variables, but instead that any relationship among the variables is too small to be of any practical 

value. Thus, if a researcher aims to deem two population means “equivalent”, an a priori decision must 

be made regarding the smallest mean difference that is practically meaningful. This difference (ε) can be 

expressed as an equivalence interval (i.e., EI = {- ε, ε }). Specifically, equivalence tests measure whether 

the effect under study falls within the pre-specified interval (e.g., -ε < μ1 -μ2 < ε). 

 One challenge of equivalence testing in psychology is determining an EI due to the paucity of 

established guidelines for selecting an appropriate interval. EIs are determined based on the researchers’ 

knowledge of their field, expertise with the constructs and samples under study, and understanding of 

how “meaningful” might be quantified for their research question. For example, one researcher might 

decide that that one standard deviation quantifies a meaningful difference, whereas another might 

choose 10% of the standard deviation as a meaningful difference. The key is that researchers must be 

able to justify their choice of an EI within the specific study and research field. 

Cheng and Shao Test for Negligible Interaction 
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Cheng and Shao’s (2007) negligible interaction test (CS) was stimulated by testing treatment-by-

centre interactions in multicentre clinical trials using factorial ANOVAs. In this context, treatment-by-

centre interaction represents heterogeneous treatment effects across centres. When the treatment-by-

centre interaction is close to zero, the overall treatment effect can be analyzed using the average of the 

treatment effects across all the centres. If the treatment-by-centre interaction is large, researchers are not 

able to combine the centres’ effects. Therefore, Cheng and Shao’s (2007) objective was to develop tests 

for negligible interaction in two-way models.  

CS tests the null hypothesis H0: δ ≥ δ0 against the alternate hypothesis H1: δ < δ0, where δ is the 

quantitative measure of interaction and δo represents a tolerance margin for the interaction. More 

specifically, an interaction effect would be considered negligible when δ < δo (see Cheng and Shao, 

2007, for the specification of δ in balanced and unbalanced models). The CS approach compares null 

and alternative hypotheses, following the two competing hypothesis approach of Neyman and Pearson. 

Hence, a priori statistical power can be computed similarly to traditional null hypothesis based tests. As 

stated above, the use of equivalence-based tests relies on an appropriate EI. δo is used to represent the 

largest effect for the interaction considered inconsequential. Note that δo represents the tolerance margin 

for interaction in standardized units; therefore it makes sense to select a value for δo that represents a 

small number of average standard deviations. Cohen (1988) has suggested that f2 = δo = .32 as a small 

effect and Cheng and Shao use δo = .25 and .49 in their examples. However, it is always best to select an 

appropriate δo based on the nature of each individual study. 

We reject H0: δ ≥ δo if Fab < Fcrit, where Fcrit is the critical value for the chosen α in the noncentral 

F distribution F∝, dfab, dfe,Nδ0
, and Nδ0is the noncentrality parameter.  

Bootstrap Approach 
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 The CS approach fills an important void in the literature, albeit with shortcomings. This paper 

will extend the CS approach by proposing an approach that: 1) demonstrates coherence between the 

omnibus test and the encompassed interaction contrasts; 2) utilizes an unstandardized EI; and 3) is 

insensitive to violations of the normality and/or homogeneity of variance assumptions.   

 The first extension is toward an approach that results in a coherent decision between the omnibus 

lack of interaction test and the S = [a(a-1)/2][b(b-1)/2] interaction contrasts. The CS approach would be 

useful, as highlighted by an anonymous reviewer, if a researcher was interested in demonstrating a 

‘pattern’ of lack of interaction in a larger factorial design; in other words, the omnibus interaction might 

indicate a lack of interaction, even if there are interaction contrasts that indicate the presence of an 

interaction. However, caution must be taken in this situation since concluding a lack of interaction when 

large interaction contrasts are present may be misleading. Take, for example, the 2 x 4 population mean 

pattern µ11 = 11; µ12 = 0; µ13 = 0; µ14 = 0; µ21 = 0; µ22 = 0; µ23 = 0; µ24 = 11 with δo = .25 and all σjk = 10. 

This is a power condition for the CS because the population interaction effect δ (.125) < δo (.25). The 

coherence issue is that, for example, the 2 x 4 design contains an interaction contrast with a population 

mean pattern of {µ11 = 11; µ14 = 0; µ21 = 0; µ24 = 11} with δ = .303 (a Type I error condition since δ > 

δo). For example, if we simulate data from these population conditions with njk = 40 and α = .05, we find 

that the omnibus CS test rejects the null hypothesis approximately 60% of the time, whereas all 

interaction contrasts reject the null about 1% of the time (the interaction contrast discussed above should 

only reject the null less than 5% of the time). A coherent, but consequently more conservative, approach 

uses an intersection-union test (Berger, 1982), where the significance of the omnibus test is implied if all 

lower order effects (in this case the interaction contrasts) are significant. Berger demonstrated that Type 

I error rates for the omnibus test cannot exceed α if the significance of the omnibus test is implied by the 

significance of each of the α-level lower-order effects.  
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 The second extension of the CS approach is utilizing an unstandardized EI. In defining an EI, the 

goal is to establish the smallest effect of practical importance. While using standardized effect sizes can 

simplify defining the EI (e.g., Cheng & Shao, 2007, utilize liberal and conservative cutoffs for the CS of 

δo = .49 and δo = .25), it is important for researchers to consider, precisely, the smallest meaningful 

difference for their study. Further, an unstandardized effect size is preferred when the units are 

meaningful (Wilkinson et al, 1999). In factorial ANOVA designs, the units are the differences in the row 

means across the columns (or vice versa). These units are interpretable as long as the researcher can 

quantify a meaningful difference in the cell means. In other words, if a researcher can quantify a 

meaningful difference in raw scale means then they almost certainly they can quantify a minimally 

important interaction effect. Imagine, for example, that a researcher proposes the following population 

mean configuration, µ11 = 5; µ12 = 0; µ21 = 0; µ22 = 0, as the smallest interaction effect that would still be 

meaningful. The half-width of the equivalence interval for the interaction effect is thus set at 5 [(µ11 - 

µ12) - (µ21 - µ22)]. Further, the meaningful difference is always expressed for the simplest interaction 

effect, the 2 x 2, and thus the task is made even simpler. 

 The final proposed extension of the CS test is toward a method that is robust to nonnormality 

and/or heteroscedasticity. It is well known that distributions in psychology rarely match the 

characteristics of the normal distribution with equal population variances (e.g., Golinski & Cribbie, 

2009; Keselman et al., 1998; Micceri, 1989; Wilcox, 2012). When these assumptions are violated, the 

Type I error rates and power of procedures that rely on these assumptions (such as the CS test) can be 

severely affected (e.g., Cribbie, Fiksenbaum, Wilcox & Keselman, 2012; Cribbie, Wilcox, Bewell & 

Keselman, 2007; Mills, Cribbie, & Luh, 2009). The approach adopted here is bootstrapping (case 

resampling) which has been applied to many problems where the underlying sampling distribution of a 

statistic is unknown, which applies when the normality and/or variance homogeneity assumptions are 
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violated.  

 The next two sections describe the unstandardized intersection-union and bootstrap-based test of 

negligible interaction (IU-B) for 2 x 2 and general a x b designs. 

 2 x 2 Design. The simplest case for the IU-B is a 2 x 2 independent groups factorial design,. 

Since only one interaction contrast is contained within the omnibus interaction, the null hypothesis for 

the omnibus test is rejected if the only interaction contrast null hypothesis is rejected. Following the 

logic of the interval approach (Westlake, 1976) and the two one-sided approach (Schuirmann, 1987), the 

null hypotheses are: 

 

Ho1: β ≥ γ 

Ho2: β ≤ -γ 

where β represents the unstandardized population interaction effect (µ11 - µ12 - µ21 + µ22) and γ 

represents the smallest meaningful unstandardized interaction effect [i.e., the EI is (-γ, γ)]. The alternate 

hypothesis can be more simply represented by: 

Ha: -γ < β < γ 

 Note that the unstandardized interaction effect may be equivalently represented in other ways, e.g.,  (µ11 

- µ21) - (µ12 - µ22) or (µ11 - µ12) - (µ21 - µ22). To avoid the usual ANOVA assumptions for our proposed 

test, we bootstrap from the observed observations in order to generate an empirical distribution function 

instead of using a theoretical sampling distribution (e.g., F distribution). The empirical distribution 

function for the statistic of interest, in this case the interaction effect, considers the nonnormality and/or 

heteroscedasticity of the data. 



   

NEGLIGIBLE INTERACTION PERFORMANCE     10 
 

 Consider an N x 3 dataset with one column for the first predictor, second predictor and outcome, 

respectively. Resample with replacement N rows of the dataset b = 1, ..., B times, and for each bootstrap 

sample compute: 

Ib = M11 - M12 - M21 + M22. 

The distribution of the B Ib statistics is I. Then, reject H01 and H02 if the interval (Iα, I1-α) falls completely 

within the unstandardized equivalence interval (-γ, γ), where Iα and I1-α represent the α and 1-α quantiles 

from distribution I.  

 a x b Design. Following the logic of intersection-union tests, the null hypothesis for the omnibus 

a x b interaction effect is rejected only if each of the null hypotheses for each of the interaction contrasts 

subsumed within the omnibus test are rejected. First, the composite omnibus null hypothesis is: 

Ho: βjj'kk' ≤ -γ | βjj'kk' ≥ γ for any j,j' and k,k', j≠j', k≠k' 

where βjj'kk' = µjk - µjk' - µj'k + µj'k'  and represents all possible interaction contrasts encompassed within 

the omnibus interaction effect. The alternate hypothesis is: 

Ha: -γ < βjj'kk' < γ for all j,j' and k,k', j≠j', k≠k'. 

In words, if the null hypothesis associated with any of the 2 x 2 interaction contrasts is not rejected then 

the omnibus null hypothesis of a meaningful interaction is also not rejected. If the null hypothesis 

associated with all of the 2 x 2 interaction contrasts is rejected then the omnibus Ho is rejected, so one 

concludes a negligible interaction is present. The interaction contrasts are each tested using the 

unstandardized bootstrap-based procedure described above for the 2 x 2 design at level α. 

 A multiplicity issue arises when selecting a significant effect out of a pool of effects that may 

also include null effects; more specifically, the probability of a Type I error increases when multiple 

tests of significance are conducted and more than one test may include null effects. This occurs when the 

omnibus null hypothesis is not rejected for the negligible interaction test, but the researcher tests 
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whether any of the S contained 2 x 2 interactions are negligible (S = [a(a-1)/2][b(b-1)/2]). The naive 

approach would be to use an adjusted α level of α / S, however, as in the multiplicity problem for one-

way independent groups equivalence tests (see Lauzon, Caffo, & Rohmel, 2013), only a subset of the S 

interaction contrasts can be detrimental to the familywise Type I error rate. Following the logic of 

Rohmel (2011) and Lauzon & Caffo (2009), an effect is detrimental to the familywise Type I error rate 

if γ ≤  |βjj'kk' | < 2γ. Here, if the population interaction effect falls at or slightly greater than γ, it could 

result in a Type I error but |βjj'kk'| ≥ 2γ are unlikely to contribute to inflation of the Type I error rate given 

their magnitude. In order to control the familywise error rate at α, one must determine the maximum 

number of detrimental 2 x 2 null interaction effects (ζ) of the S 2 x 2 interactions encompassed by the 

larger a x b interaction.  

 It is obvious for an omnibus 2 x 2 interaction that S = ζ = 1 (e.g., µ11 =1; µ12 = 0; µ21 = 0; µ22 = 0 

with γ = 1) and thus no multiplicity control is necessary. Following Rohmel's (2011) logic, the worst-

case scenario in greater than 2 x 2 designs does not occur when all effects are null, but when the greatest 

number of interaction effects fall between γ and 2γ. Take, for example, a 4 x 2 design (S = 6). Although 

it might be tempting to consider [µ11 = 0; µ12 = 1; µ13 = 2; µ14 =3; µ21 = 0; µ22 = 0; µ23 = 0; µ24 = 0 with γ 

= 1] a worst case scenario since all interaction effects are null, ζ is only equal to three (comparing 

columns one and two, two and three, and three and four). In contrast, the patterns [µ11 = 1; µ12 = 0; µ13 = 

0; µ14 = 0; µ21 = 0; µ22 = 0; µ23 = 0; µ24 = 1 with γ = 1], [µ11 = .5; µ12 = 0; µ13 = .5; µ14 = 0; µ21 = 0; µ22 = 

.5; µ23 = 0; µ24 = .5 with γ = 1], each have ζ = 4 (in the first set comparing columns one and two, one and 

three, two and four, and three and four; in the second set comparing columns one and two, one and 

three, two and three, and three and four).  

 It can be shown that ζ = 2 for 2 x 3 designs (S = 3), ζ = 4 for 2 x 4 designs (S = 6), ζ = 6 for 3 x 3 

designs (S = 9), and ζ = 12 for 3 x 4 designs (S = 18), etc. Generally, two-thirds of the total number of 
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interaction contrasts can be worst-case scenarios (i.e., ζ = 2S / 3). We verified this result through 

simulation by randomly sampling population cell means and computing the maximum number of 

detrimental Type I error cases for each design. Dividing the familywise Type I error rate (α) by 2S / 3 

(i.e., α / ζ) should provide strong familywise Type I error control. 

 Our primary goal is to demonstrate the analytical differences between the CS test and our 

proposed bootstrap intersection-union test of negligible interaction (IU-B). We also compare both 

omnibus and interaction contrast Type I error control and power of an intersection-union version of the 

Cheng and Shao test (CS-IU) to the IU-B test. 

Method 

A simulation study was conducted using R (R Core Team, 2014) to investigate the omnibus and 

familywise Type I error control and omnibus and per-comparison power rates of the CS and the 

proposed IU-B procedures. An intersection-union version of the CS test (CS-IU) was also evaluated by 

using the CS test on all S 2 x 2 interaction contrasts and rejecting the omnibus test if all tests are 

statistically significant.  

A two independent-groups factorial ANOVA design was used in this study. Several variables 

were manipulated including: a) design (2 x 2; 4 x 2); b) distribution shape (normal, positively skewed); 

c) balanced or unbalanced cell size (average cell size was set at n = 40); d) equal or unequal population 

cell standard deviations (average σ = 10); e) combination of unequal cell sizes and unequal populations 

standard deviations (direct; inverse); and f) population cell mean pattern.   

For the positively skewed distribution the outcome was 𝜒2distributed with three degrees of 

freedom (skewness = 1.59, kurtosis = 7). Several Type I error and power population mean 

configurations were used. For the Type I error condition, we deemed ± .2α an acceptable range of 
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deviation from the nominal rate (these bounds fall between the liberal and conservative bounds proposed 

by Bradley, 1978). For all Type I error conditions, the omnibus test interaction effect for the CS test (δ) 

was equal to δo. For the IU-B test in the 2 x 2 design, the interaction effect (βjj'kk') was equal to γ. The 

omnibus IU-B and CS-IU tests in the 4 x 2 design are expected to be conservative since multiple 

interaction contrasts can be null and/or power can be less than perfect (with the degree of 

conservativeness depending on how many of the S interaction contrasts are Type I error conditions and 

how far the means are from the border of the EI). For example, with the mean pattern μ11, μ12, ..., μ42 = 

23.094, 0, ..., 0, there are 4 interaction contrasts that fall at the edge of the EI, with the remaining 

contrasts being power conditions. Thus, even if power for detecting the non-null interaction contrasts 

was at 100%, the probability that all interaction contrasts are rejected would be low since four of them 

would have approximately a nominal α-level rejection rate. When both cell sizes and population 

standard deviations were unequal, they were either directly paired (largest size with largest standard 

deviation) or inversely paired (largest size with smallest standard deviation). The specific conditions can 

be found in Tables 1, 2, 4 and 5.  

Five thousand simulations were conducted for each condition using a nominal significance level 

of .05 and a tolerance margin for interaction of δo= .25. With α = .05, the acceptable range of deviation 

from the nominal Type I error rate was set at .04 - .06 [.05 +/- .2(.05)].With 5000 simulations the Type I 

error results have a standard error of approximately .003. For the IU-B, γ was set at the largest 2 x 2 

population interaction contrast effect. For example, with the mean configuration μ11, μ12, ..., μ42 = 

14.142,0,...,0,14.142, γ was set at 28.184 since the largest 2 x 2 interaction contrast effect occurs when 

the mean pattern is μ11, μ12, μ41, μ42 = 14.142,0,0,14.142. For the power conditions, five points was 

subtracted from the unstandardized interaction effect with the population mean pattern left unchanged. 

Results 
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Type I Error Rates 

2 x 2 Design. Type I error rates are presented in Table 1. When all of the assumptions were met, both 

the CS and IU-B procedures maintained rates within the acceptable bounds. However, when the 

normality and/or variance homogeneity assumptions were not met, only the IU-B was able to maintain 

the rates within the acceptable range over all conditions. Type I error rates for the CS were severely 

inflated in some conditions, with a maximum rate of 12.6% with a skewed distribution and directly 

paired cell sizes and variances. 

4 x 2 Design. Omnibus Type I error rates and familywise Type I error rates are presented in Tables 2 

and 3, respectively. Like in the 2 x 2 design, when all of the assumptions were met the CS procedure 

maintained rates within the acceptable bounds, however when the assumptions were violated, the rates 

regularly fell outside of the acceptable bounds. As expected, the omnibus rates for the IU-B depended on 

the population mean configuration with rates falling at the nominal rate when only one interaction 

contrast was at the bound of the equivalence interval (e.g., μ11, μ12, ..., μ42 = 14.142,0,...,0,14.142) and 

were conservative otherwise. Rates for the CS-IU were very conservative. This is expected because, as 

discussed earlier, δo is set for the full 4 x 2 mean configuration, but the effect size for one or more of the 

contained 2 x 2 interaction contrasts could exceed δo. For example, the effect size for the μ11, μ12, μ41 μ42 

= 14.142, 0, 0, 14.142 interaction contrast is much larger than δo for the full 4 x 2 mean configuration so 

this contrast would rarely, if ever, be rejected.  

 Familywise error rates for both the CS and IU-B procedures were determined using an 

interaction contrast Type I error rate of α/ ζ . Familywise error rates for the CS procedure, in addition to 

being overly conservative in many conditions, were again affected nonnormality and/or variance 

heterogeneity, with rates exceeding the upper bounds in some conditions. Rates for the IU-B never 
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exceeded the upper bound (.06), with rates again depending on the configuration of the means. More 

specifically, for mean configurations with a high number of detrimental Type I error conditions (e.g., 

μ11, μ12, ..., μ42 = 10, 0, 10, 0, 0, 10, 0, 10 with ζ = 4) the familywise rates were closer to α, whereas for 

mean configurations with a low number of detrimental Type I error conditions (e.g., μ11, μ12,..., μ42 = 

14.142,0 , ..., 0, 14.142 with ζ = 1) the familywise rates were conservative (as the interaction contrast 

Type I error rate was α divided by the maximum ζ for that design).  

Power 

2 x 2 Design. Power rates are presented in Table 4. In conditions in which the Type I error rates were 

controlled for the CS procedure, the power rates for the IU-B were always higher than those for the CS. 

When the Type I error rates were not maintained within the acceptable bounds for the CS test one should 

not conduct power comparisons. 

4 x 2 Design. Omnibus and per-contrast power rates are presented in Tables 5 and 6, respectively. In 

general a x b designs, omnibus power comparisons between the CS procedure and IU types tests are 

difficult to make given the theoretical differences between the procedures. In other words, although the 

power rates for the CS procedure are generally higher than those for the IU-based procedures, the CS 

procedure, even in power conditions, can contain interaction contrasts with effects much greater than δo. 

 When an IU-based version of the CS is compared to the IU-B, the IU-B is generally more 

powerful since the presence of interaction contrasts greater than δo (which is, in fact, not a power 

condition) reduces the power of the CS-IU procedure. On the other hand, the interaction contrasts for the 

IU-B cannot exceed γ and thus they can have relatively greater power. The degree of conservativeness 

of the IU-B relative to the CS depends on how far each of the interaction contrast effects are from γ. For 
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example, with μ11, μ12, ..., μ42 = 11.642, 0, ..., 0, 11.642, only one βjj'kk' is close to γ and the rates for the 

IU-B are more powerful than the CS.  

 When familywise error control is imposed for post hoc testing of the S interaction contrasts, the 

average per-pair power rates of the CS and IU-B tests are of interest. The IU-B was always more 

powerful than the CS, except for cases in which the CS procedure had inflated Type I error rates due to 

its lack of robustness to variance heterogeneity (more specifically, due to inflated Type I error rates for 

the CS procedure when unequal samples sizes and standard deviations are directly paired). 

Discussion 

 We compared two methods for detecting negligible interactions, Cheng and Shao’s 

noncentrality-based procedure and our proposed bootstrap-based intersection-union procedure. There are 

numerous instances where researchers are interested in detecting negligible interaction and thus the 

availability of an appropriate test is extremely valuable. Assessing a lack of interaction using non-

rejection of the null hypothesis of no interaction in a traditional ANOVA is not acceptable 

The IU-B procedure was proposed to improve on some of the characteristics of the CS 

procedure. More specifically, the IU-B procedure provides coherent decisions between the omnibus test 

and the contained interaction contrasts, utilizes an unstandardized equivalence interval, and is insensitive 

to assumption violations. The first two potential advantages are theoretical, whereas the third was 

verified through a simulation study.  

In 2 x 2 independent groups factorial designs, the procedures are most comparable because only 

a single test is conducted with each method (although the CS uses a standardized EI whereas the IU-B 

uses an unstandardized EI). The proposed IU-B procedure provided excellent Type I error control (even 

using the conservative α ± .2α criteria), whereas the CS procedure was not able to control the Type I 
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error rates within these bounds when the normality and/or homogeneity of variance assumptions were 

violated. Further, even when the assumptions were satisfied, the IU-B was always more powerful than 

the CS. 

In larger a x b designs, the procedures differ theoretically and therefore direct comparisons are 

difficult. However, it remained clear that the omnibus CS test is greatly affected by nonnormality and 

variance heterogeneity as the probability of a Type I error approached 4α under these conditions. Since 

the IU-B procedure is an intersection-union test, the omnibus Type I error rates depend on the 

population mean configuration. Specifically, the overall Type I error rates approach the nominal rate 

when there is only a single detrimental Type I error condition, whereas the test is more conservative for 

ζ > 1. Further, as expected, the omnibus Type I error rate never exceeds the nominal rate. When interest 

is in the S interaction contrasts, again the CS test is affected by violations of the assumptions and rates 

exceeded the upper acceptable limits in a few conditions. For the IU-B, the familywise error rates 

depended on the population mean configuration; however, in this situation, the rates approach the 

nominal rate when ζ is large (since each interaction contrast is being evaluated against a nominal 

significance level of α/ ζ ) and are more conservative as ζ decreases. Comparisons of the CS-IU to the 

IU-B, either for omnibus testing or for testing all interaction contrasts, revealed that the IU-B was more 

powerful, although again we must use caution when interpreting these results since the nature of the 

equivalence intervals differ. 

For this simulation study, we used two factorial independent groups models (2 x 2; 4 x 2) and 

manipulated specific variables (e.g., sample size equality/inequality, population standard deviation 

equality/inequality, population mean configuration, population distribution shape). Therefore, a potential 

limitation of the study is that the results obtained are restricted to the conditions investigated. For 

example, only one type of nonnormal distribution was investigated and thus the pattern of results might 
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vary over different distribution shapes. We also did not explore within-subject designs, hierarchical 

models or more complex factorial models, which represent important extensions of this work.  

To summarize, this study proposed a novel intersection-union and bootstrap-based test of 

negligible interaction. It extends the negligible interaction test proposed by Cheng and Shao (2007) by 

devising a method that results in coherent decisions between the omnibus test and the contained 

interaction contrasts, utilizes an unstandardized equivalence interval, and is insensitive to violations of 

the normality and variance homogeneity assumptions. If a standardized equivalence interval is preferred, 

all assumptions are met and incoherent decisions between the omnibus test and interaction contrasts are 

tolerated, the Cheng and Shao test can be adopted. However, given the advantages of the proposed 

procedure discussed above, we recommend that researchers conduct tests of negligible interaction using 

the intersection-union and bootstrap-based procedure. To facilitate the use of both the CS and IU-B 

tests, researchers may obtain a function for use with the free, open source software R (R Core Team, 

2014) from http://cribbie.info.yorku.ca/r-functions/. 
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Table 1 

Type I Error Rates for the 2 x 2 Design 

 

n11,n12,n21,n22  σ11,σ12,σ21,σ22  μ11, μ12, μ21, μ22       

 

                 Normal Distribution        Chi-Square Distribution 

           CS IU-B   CS IU-B 

 

40,40,40,40  10,10,10,10  20,0,0,0    .048  .048   .069 .056    

      10,0,0,10    .053  .051   .060 .049 

   5,15,5,15  22.361,0,0,0    .049 .055   .070 .055 

      11.181,0,0,11.181   .050 .062     .074 .056  

30,30,50,50  10,10,10,10  20,0,0,0    .061 .043   .088 .060 

      10.328,0,0,10.328   .055 .059   .062 .045 

   5,5,15,15  23.094,0,0,0    .087 .047   .115 .056 

      11.547,0,0,11.547   .109 .059   .126 .052 

   15,15,5,5  23.094,0,0,0    .022 .050   .038 .052 

      11.547,0,0,11.547   .020 .048   .042 .052 

  

Note: CS = Cheng & Shao (2007) test; IU-B = Intersection-Union and Bootstrap-Based test; bolded value = Type I error rate did not fall within the 

acceptable range of .04-.06.  
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Table 2 

Type I Error Rates for the 4 x 2 Design 

 

n11,n12,...,n42   σ11, σ12,...,σ42  μ11, μ12,..., μ42         

 

             Normal Distribution     Chi-Square Distribution 

            CS         CS-IU      IU-B CS         CS-IU      IU-B 
 

40,...,40   10,..,10   14.142,0,...,0,14.142   .048 .000 .054 .066 .000 .059 

       10,0,10,0,0,10,0,10   .050 .002 .002 .068 .002 .002  

       23.094,0,...,0    .046 .000 .003 .060 .000 .003 

    5,5,5,5,15,15,15,15 15.812,0,...,0,15.812   .050 .000 .049 .072 .000 .049   

       11.181,0,11.181,0,0,11.181,0,11.181 .056 .002 .001 .077 .004 .002 

       25.819,0,...,0    .052 .000 .005 .076 .002 .003 

30,30,30,30,50,50,50,50 10,...,10  14.606,0,...,0,14.606   .052 .000 .054 .060 .000 .054 

       10.328,0,10.328,0,0,10.328,0,10.328 .046 .002 .002 .065 .002 .002 

       23.851,0,...,0    .045 .000 .005 .068 .000 .008 

    5,5,5,5,15,15,15,15 16.330,0,...,0,16.330   .157 .000 .048 .172 .000 .040 

       11.547,0,11.547,0,0,11.547,0,11.547 .159 .005 .002 .186 .000 .007 

       26.667,0,...,0    .172 .000 .003 .189 .006 .003 

    15,15,15,15,5,5,5,5 16.330,0,...,0,16.330   .017 .000 .056 .028 .000 .052 

       11.547,0,11.547,0,0,11.547,0,11.547 .013 .000 .001 .026 .002 .004 

       26.667,0,...,0    .011 .000 .003 .019 .000 .006 

  

Note: CS = Cheng & Shao (2007) test; CS-IU = ; IU-B = Intersection-Union and Bootstrap-Based test   
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Table 3 

Familywise Error Rates for the 4 x 2 Design 

 

n11,n12,...,n42   σ11, σ12,...,σ42  μ11, μ12,..., μ42         

 

                   Normal Distribution  Chi-Square Distribution 

             CS IU-B  CS IU-B 

 

40,...,40   10,..,10   14.142,0,...,0,14.142    .000 .012  .000 .018 

       10,0,10,0,0,10,0,10    .043 .044  .070 .050 

       23.094,0,...,0     .003 .035  .006 .033 

    5,5,5,5,15,15,15,15 15.812,0,...,0,15.812    .000 .018  .000 .014 

       11.181,0,11.181,0,0,11.181,0,11.181  .044 .049  .066 .052 

       25.819,0,...,0     .002 .038  .008 .042 

30,30,30,30,50,50,50,50 10,...,10  14.606,0,...,0,14.606    .000 .012  .000 .022 

       10.328,0,10.328,0,0,10.328,0,10.328  .044 .049  .072 .056 

       23.851,0,...,0     .003 .036  .007 .040 

    5,5,5,5,15,15,15,15 16.330,0,...,0,16.330    .000 .018  .000 .018 

       11.547,0,11.547,0,0,11.547,0,11.547  .071 .048  .106 .053  

       26.667,0,...,0     .003 .036  .009 .042 

    15,15,15,15,5,5,5,5 16.330,0,...,0,16.330    .000 .018  .000 .014 

       11.547,0,11.547,0,0,11.547,0,11.547  .026 .054  .051 .057 

       26.667,0,...,0     .001 .033  .006 .034 

  

Note: CS = Cheng & Shao (2007) test; IU-B = Intersection-Union and Bootstrap-Based test   
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Table 4 

Power Rates for the 2 x 2 Design 

 

n11,n12,n21,n22  σ11,σ12,σ21,σ22  μ11, μ12, μ21, μ22       

 

                 Normal Distribution      Chi-Square Distribution 

           CS IU-B   CS IU-B 

 

40,40,40,40  10,10,10,10  15,0,0,0    .453 .481     .451 .493  

      7.5,0,0,7.5    .473 .488     .433 .470 

   5,15,5,15  17.361,0,0,0    .404 .423     .387 .435 

      8.681,0,0,8.681    .383 .409     .380 .424 

30,30,50,50  10,10,10,10  15,0,0,0    .502 .455     .502 .470 

      7.828,0,0,7.828    .418 .450     .423 .460 

   5,5,15,15  18.094,0,0,0    .546 .458     .526 .478  

      9.047,0,0,9.047    .564 .484     .522 .479 

   15,15,5,5  18.094,0,0,0    .228 .359     .240 .372 

      9.047,0,0,9.047    .227 .348     .223 .355 

  

Note: CS = Cheng & Shao (2007) test; IU-B = Intersection-Union and Bootstrap-Based test; bolded value = Type I error rate did not fall within the 

acceptable range of .04-.06.  
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Table 5 

Omnibus Power Rates for the 4 x 2 Design 

 

n11,n12,...,n42   σ11, σ12,...,σ42  μ11, μ12,..., μ42         

 

             Normal Distribution    Chi-Square Distribution 

                      CS1         CS-IU      IU-B CS1        CS-IU      IU-B      

 

40,...,40   10,..,10   11.642,0,...,0,11.642   .447 .003 .483 .438 .008 .492 

       7.5,0,7.5,0,0,7.5,0,7.5   .691 .138 .158 .680 .119 .150 

       18.094,0,...,0    .597 .029 .238 .567 .042 .241 

    5,5,5,5,15,15,15,15 13.312,0,...,0,13.312   .387 .003 .444 .376 .011 .420   

       8.681,0,8.681,0,0,8.681,0,8.681  .597 .095 .124 .576 .090 .115 

       20.819,0,...,0    .494 .019 .178 .471 .060 .158 

30,30,30,30,50,50,50,50 10,...,10  12.106,0,...,0,12.106   .416 .005 .446 .420 .012 .478 

       7.828,0,7.828,0,0,7.828,0,7.828  .674 .123 .135 .638 .111 .145 

       18.851,0,0,0,0,0,0,0   .554 .021 .203 .550 .029 .231 

    5,5,5,5,15,15,15,15 13.830,0,...,0,13.830   .646 .005 .452 .636 .018 .477  

       9.047,0,9.047,0,0,9.047,0,9.047  .830 .208 .135 .801 .187 .143 

       21.667,0,0,0,0,0,0,0   .766 .053 .220 .724 .107 .194 

    15,15,15,15,5,5,5,5 13.830,0,...,0,13.830   .151 .000 .345 .156 .003 .356  

       9.047,0,9.047,0,0,9.047,0,9.047  .288 .028 .076 .307 .029 .083 

       21.667,0,0,0,0,0,0,0   .214 .004 .134 .229 .000 .170 

  

Note: CS = Cheng & Shao (2007) test; CS-IU = Intersection-Union version of the Cheng & Shao (2007) test; IU-B = Intersection-Union and 

Bootstrap-Based test. 1 Caution should be taken when comparing these power results to the IU-based procedures since the mean configurations 

for the CS can contain 2x2 interactions larger than δo 
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Table 6 

Per-Contrast Power Rates for the 4 x 2 Design 

 

n11,n12,...,n42   σ11, σ12,...,σ42  μ11, μ12,..., μ42         

 

                   Normal Distribution   Chi-Square Distribution 

            CS IU-B  CS IU-B       

 

40,...,40   10,..,10   11.642,0,...,0,11.642   .588 .878  .577 .878  

       7.5,0,7.5,0,0,7.5,0,7.5   .499 .514  .497 .516 

       18.094,0,...,0    .524 .637  .532 .641 

    5,5,5,5,15,15,15,15 13.312,0,...,0,13.312   .566 .870  .545 .868    

       8.681,0,8.681,0,0,8.681,0,8.681  .463 .478  .470 .488 

       20.819,0,...,0    .519 .609  .523 .613 

30,30,30,30,50,50,50,50 10,...,10  12.106,0,...,0,12.106   .580 .872  .574 .924 

       7.828,0,7.828,0,0,7.828,0,7.828  .489 .499  .485 .508 

       18.851,0,0,0,0,0,0,0   .521 .624  .527 .631 

    5,5,5,5,15,15,15,15 13.830,0,...,0,13.830   .662 .875  .655 .878   

       9.047,0,9.047,0,0,9.047,0,9.047  .525 .496  .524 .509 

       21.667,0,0,0,0,0,0,0   .530 .628  .536 .629 

    15,15,15,15,5,5,5,5 13.830,0,...,0,13.830   .455 .855  .442 .853 

       9.047,0,9.047,0,0,9.047,0,9.047  .407 .446  .414 .461 

       21.667,0,0,0,0,0,0,0   .510 .587  .513 .593 

  

Note: CS = Cheng & Shao (2007) test; IU-B = Intersection-Union and Bootstrap-Based test. 


