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Abstract 

Researchers in education are often interested in determining if independent groups are equivalent 

on a specific outcome. Equivalence tests for two independent populations have been widely 

discussed, although testing for equivalence with more than two independent groups has received 

very little attention. In this paper we discuss alternatives for testing the equivalence of more than 

two independent populations and use a Monte Carlo study to demonstrate and compare the 

performance of these alternatives under several conditions. The results indicate that a one-way 

test (e.g., Wellek F) is recommended for assessing the equivalence of more than two independent 

groups, as approaches based on conducting pairwise tests of equivalence are overly conservative. 

 

Keywords: Equivalence Testing, Independent Groups Designs, Monte Carlo Research 
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Tests of Equivalence for One-Way Independent Groups Designs 

 Many empirical questions in educational research involve assessing the difference 

between independent groups on a specific dependent variable. For example, a researcher may be 

interested in demonstrating that mean scores differ for participants taking a paper and pencil test 

and those taking a computer-based test. The null hypothesis in this case would be that the 

population group means are equal and the researcher would typically use a two-independent 

samples t test (or a one-way independent samples ANOVA if there were more than two groups) 

to evaluate this hypothesis. In fact, evaluating the null hypothesis that independent population 

means are equal accounts for almost all hypothesis testing involving independent groups, despite 

the fact that in many cases the researcher’s primary interest is in whether or not the population 

means are equivalent. Testing the null hypothesis of equal population means is inappropriate for 

studies in which the primary objective is to demonstrate that groups are equivalent, rather than 

different, on a particular measure. In this case, equivalence tests (discussed below) are available 

for demonstrating that population means are equivalent, or in other words, that any differences 

between the means of the populations can be considered trivial.  

 When employing tests of equivalence the goal is not to show that treatment conditions are 

perfectly identical, but only that the differences between the treatments are too small to be 

considered meaningful. Consider, for example, an investigation in which an attempt is made to 

demonstrate that scores on a computer-based test are equivalent to those from a paper and pencil 

based test (e.g., Epstein, Klinkenberg, Wiley & McKinley, 2001). In this example the researchers 

may not need to show that the test scores are ‘exactly equivalent’ (as with the traditional null 

hypothesis (Ho: μ1 = μ2), but only that any differences in test scores are inconsequential (i.e., |μ1 - 
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μ2| < D, where D represents an a priori critical difference for determining equivalence). As 

Cribbie, Gruman and Arpin-Cribbie (2004) and Rogers, Howard and Vessey (1993) note, the 

rejection or nonrejection of the null hypothesis of traditional tests tells us very little about the 

potential equivalence of the groups in question. More specifically, traditional tests of Ho: μ1 = μ2 

(e.g., two independent samples t test) evaluate whether the means are exactly identical, and 

larger sample sizes result in greater power for detecting any differences between the means. 

Hence, even minute differences between the means of the populations may be statistically 

significant with traditional tests, however this result provides no valuable information to a 

researcher who would like to know if the population means are equivalent. 

 Several tests have been designed to evaluate the equivalence of two population means, 

with the test due to Schuirmann (1987) being one of the most popular. Schuirmann’s test of 

equivalence has been introduced to the behavioral sciences through influential articles by Rogers 

et al. (1993), Seaman and Serlin (1998), and others. The first step in applying Schuirmann’s test 

of equivalence is to establish a critical mean difference for declaring two population means 

equivalent (D). Any mean difference smaller than D would be considered meaningless within the 

framework of the experiment. It is assumed that the two samples are randomly and 

independently selected from normally distributed populations with equal variances. Two one-

sided hypothesis tests can be used to establish equivalence, where the null hypothesis relates to 

the nonequivalence of the population means and can be expressed as two separate composite 

hypotheses: 

 Ho1 : µ1 - µ2 ≥D; Ho2 : µ1 - µ2 ≤ -D . 

Rejection of Ho1 implies that µ1 - µ2 < D, and rejection of Ho2 implies that µ1 - µ2 > -D. Further, 
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rejection of both hypotheses implies that µ1 - µ2 falls within the bounds of (-D, D) and the means 

are deemed equivalent. 

Ho1 is rejected if t1 ≤-t α,df where: 

   

 

 

and Ho2 is rejected if t2 ≥t α,df where: 
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1 and 2 are the group means, n1 and n2 are the group sample sizes, s1 and s2 are the group 

standard deviations and t,df is the upper-tailed -level t critical value with df = n1 + n2 - 2 

degrees of freedom. Several articles have discussed the use of equivalence tests in two 
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and the degrees of freedom are replaced by: 

 

 

 

 

 

Although the Schuirmann-Welch test is designed for situations where the population variances 

are unequal (which is not the case in this paper), the Schuirmann-Welch test performs well both 

when variances are equal as well as unequal and is therefore included as an alternative test in this 

paper and recommended as a generic test for assessing the equivalence of two independent 

groups (whether the variances are equal or unequal). 

 Although equivalence tests for two independent groups have been discussed frequently, 

the case of general one-way independent groups designs has received little attention, even though 

hypotheses concerning equivalence often deal with more than two groups. For example, a 

researcher may be interested in demonstrating that satisfaction with university is not a function 

of type of living accommodation, where students who live on-campus, at home with their 

parents, off-campus alone, or off-campus with others, all score similarly on satisfaction with 

university. Another researcher might be interested in demonstrating that students from many 

cultural backgrounds (e.g., North American, South American, Asian, European) score 

equivalently on a standardized test (e.g., Graduate Record Exam). Important methodological 

questions arise when more than two groups are being considered, including what form of test 

should be applied.  
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 Researchers familiar with the popular two independent samples tests of equivalence (e.g., 

Schuirmann test) would be likely to evaluate the equivalence of J population means by 

demonstrating in a pairwise manner that each group was equivalent to every other group. For 

example, if a researcher wanted to demonstrate that 3 population means are equivalent, they 

might demonstrate that the first population is equivalent to the second population, that the first 

population is equivalent to the third population, and that the second population is equivalent to 

the third population. Another option is to evaluate the equivalence of J populations means by 

demonstrating the equivalence of the two means with the largest mean difference. 

 An alternative approach, outlined by Wellek (2003), is to use a one-way test of 

equivalence where the equivalence of all J population means is simultaneously evaluated.  

The null hypothesis for a one-way equivalence test would be that the combined difference 

between multiple groups falls within an equivalence interval. Wellek suggested the following 

hypotheses: Ho: ψ
2 

≥ ε
2
, Ha: ψ

2 
< ε

2
, where ε is the equivalence interval and: 
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andε
2 

represents the noncentrality parameter. 

 The purpose of the current study is to evaluate the available approaches to assessing the 

equivalence of J independent groups and to be able to make recommendations regarding the most 

appropriate test.  

Method 

 A simulation study was used to compare the performance of three approaches to 

assessing the equivalence of J independent groups: 1) Wellek One-Way Equivalence Test 

(Wellek); 2) Multiple Pairwise Schuirmann Tests (where the J populations are considered 

equivalent if each group is equivalent to each other group) using either the original Schuirmann 

statistic (S_P) or the heteroscedastic Schuirmann-Welch statistic (SW_P); and 3) Largest Mean 

Difference Schuirmann test (where the J populations are considered equivalent if the two groups 

with the largest mean difference are declared equivalent), using either the original Schuirmann 

statistic (S_L) or the heteroscedastic Schuirmann-Welch statistic (SW_L). For the Wellek 

procedure ε
2
 was set equal to the ω

2
 for the Type I error conditions. For the Schuirmann test D 

was set equal to 1 for all tests. Several variables were manipulated in this study including: a) 

number of groups (J = 3 and 5); b) average sample size (average n = 20 and average n = 75); c) 

degree of sample size heterogeneity (equal n, moderately unequal n, extremely unequal n); and 

d) population mean configuration (see Table 1). 

 Ten thousand simulations were performed using the SAS software package, specifically 

SAS’s Interactive Matrix Language (IML) package (SAS Institute, 1999). Normally distributed 

random variables were generated using the RANNOR random number generator. A nominal α 
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level of .05 was used for all analyses. 

Results 

J = 3 

 The Type I error and power rates for the Wellek, S_P, SW_P, S_L and SW_L with three 

independent groups are presented in Tables 2 and 3. When there were three independent groups 

the Type I error rates for the Wellek one-way test of equivalence were maintained at 

approximately α under all conditions. The empirical Type I error rates for the S_P, SW_P, S_L 

and SW_L were very conservative with the population mean configuration µ1 = 0, µ2 = 0, µ3 = 1, 

ranging between .007 and .014. The empirical Type I error rates for the  S_P, SW_P, S_L and 

SW_L were less conservative with the population mean configuration µ1 = 0, µ2 = .5, µ3 = 1 and n 

= 20 ranging between .032 and .037, and very accurate with the population mean configuration 

µ1 = 0, µ2 = .5, µ3 = 1 and n = 75 ranging between .048 and .049.  

 The power results very closely mirror those of the Type I error results. The empirical 

power rates for the S_P, SW_P, S_L and SW_L were considerably lower with the population 

mean configuration µ1 = 0, µ2 = 0, µ3 = 1 than the rates for the Wellek one-way equivalence test 

across all conditions. The empirical power rates for the S_P, SW_P, S_L and SW_L were lower 

with the population mean configuration µ1 = 0, µ2 = .5, µ3 = 1 and n = 20 relative to the rates for 

the Wellek one-way equivalence test, although with an average n = 75 the empirical power of the 

S_P, SW_P, S_L and SW_L was slightly larger than that of the Wellek one-way equivalence 

test. 

J = 5 

 The Type I error and power rates for the Wellek, S_P, SW_P, S_L and SW_L with five 
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independent groups are presented in Tables 4 and 5. When there were five independent groups 

the Type I error rates for the Wellek one-way test of equivalence were maintained at 

approximately α under all conditions. The empirical Type I error rates for the S_P, SW_P, S_L 

and SW_L were conservative across all conditions, with the rates extremely conservative for the 

population mean configuration µ1 = 0, µ2 = 0, µ3 = 0, µ4 = 1, µ5 = 1. The empirical Type I error 

rates for the  S_P, SW_P, S_L and SW_L were less conservative with the population mean 

configuration µ1 = 0, µ2 = .25, µ3 = .5, µ4 = .75, µ5 = 1, although the rates for n = 20 never 

exceeded .012 and the rates for n = 75 never exceeded .035. 

 The power results again mirror those of the Type I error results. The empirical power 

rates for the S_P, SW_P, S_L and SW_L were considerably lower with the population mean 

configuration µ1 = 0, µ2 = 0, µ3 = 0, µ4 = 1, µ5 = 1 than the rates for the Wellek one-way 

equivalence test across all conditions, and also consistently lower for the S_P, SW_P, S_L and 

SW_L with the mean configuration µ1 = 0, µ2 = .25, µ3 = .5, µ4 = .75, µ5 = 1, relative to the Wellek 

one-way procedure. 

Discussion 

 The Wellek one-way test of equivalence performed very well across all conditions 

investigated in this study. The Type I error rates were very accurate and the power was generally 

much larger for the Wellek procedure than for the Schuirmann pairwise approach or the 

Schuirmann approach based on the largest mean difference between groups. There was very little 

difference between the Schuirmann pairwise approach and the Schuirmann approach based on 

the largest mean difference across all of the conditions investigated in this study. These results 

indicate that although researchers may be more familiar with two-sample based equivalence tests 
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for independent groups, when there are more than two groups there is much to be gained by 

adopting a one-way test of equivalence rather than adopting an approach that assesses 

equivalence using only two groups at a time (further, as a reviewer identified, it is also possible 

to conduct the Wellek one-way equivalence test with only two groups, although we found 

slightly inflated Type I error rates for the Wellek test with only two groups and therefore 

recommend the Schuirmann two independent groups equivalence test for this design).  

 These results are very interesting because they contradict recommendations for 

conducting traditional tests of the difference between groups (e.g., one-way ANOVA F test) in 

one-way designs. For example, Bernhardson (1975) and Hancock and Klockars (1996) explain 

that conducting pairwise multiple comparison tests of the J groups only when an omnibus test is 

statistically significant is not recommended unless rejection of the omnibus test is required for 

the multiple comparison procedure. To clarify this point, if a researcher was interested in 

determining if the means of three independent groups were different, and intended on using 

Tukey’s popular ‘Honestly Significant Difference’ (HSD) multiple comparison procedure (which 

does not require a significant omnibus test for use) for familywise error control, she should 

conduct the pairwise multiple comparison procedures regardless of whether or not the omnibus 

test is significant. If she only conducted the pairwise tests if the omnibus test was statistically 

significant the empirical Type I error rates and power would be biased downwards. This is an 

important consideration that is often overlooked by applied researchers. This also contradicts the 

findings of this study that conducting all pairwise tests of equivalence without conducting an 

omnibus test would bias the Type I error and power rates downwards.  

 An interesting question that emerges then is why the approaches based on the 
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Schuirmann test statistic are generally conservative. The answer to this question lies in the fact 

that declaring all J groups equivalent requires multiple statistically significant test statistics (even 

when we are only comparing the largest difference between means there is an expectation that 

smaller differences between means will be statistically significant, even though this is not always 

the case and hence the approach using only the largest difference between means is sometimes 

slightly more powerful). Therefore, the probability of declaring all J groups equivalent is a 

function of (among other things) the product of the probabilities of declaring each pairwise mean 

difference equivalent.  For example, with the population mean configuration µ1 = 0, µ2 = 0, µ3 = 1, 

and the critical difference (D) set equal to one, we know that if all the assumptions are met the 

probability of a Type I error for the pairwise null hypotheses Ho: µ1 = µ3 and Ho: µ2 = µ3 would 

each be approximately .05 (assuming α = .05). The power of Ho: µ1 = µ2 would depend on the 

sample size, the variability, etc. It should be clear to see that unless Ho: µ1 = µ3 and Ho: µ2 = µ3 

are perfectly correlated and the power of Ho: µ1 = µ2 equalled 1.0, the Type I error rate of the 

pairwise Schuirmann approach would be less than .05 (although it is more difficult to see, this 

also applies to the case of declaring all J groups equivalent if the largest mean difference is 

declared equivalent because generally this will only occur when all null hypotheses are rejected). 

Using this logic, we can also see that when the population mean configuration is µ1 = 0, µ2 = .5, 

µ3 = 1 that the approach will be less conservative because now the empirical Type I error rate for 

declaring all J groups equivalent with the Schuirmann approach will equal .05 when the Type I 

error rate for Ho: µ1 = µ3 equals .05 and the power of Ho: µ1 = µ2 and Ho: µ2 = µ3 equals 1. With a 

large sample size we saw that in fact the Type I error rate for declaring all J groups equivalent 

did approach .05. However, with more groups and/or a larger sample size the empirical Type I 
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error rates are expected to be conservative. 

 An important consideration in adopting the Wellek one-way test of equivalence is what 

value to use for ε. Wellek (2003) recommends adopting ε = .25 for a strict equivalence criterion 

and ε = .50 for a liberal equivalence criterion. It is also important to note that ε
2
 can be computed 

using the formula for ψ
2 

in the case where researchers have established population values that 

establish the bounds for equivalence (and the average within group variance is known). 

 To summarize, many empirical questions in educational research involve demonstrating 

the equivalence of multiple groups.  For example, educational researchers may be interested in 

determining if two pedagogical methods produce equivalent learning outcomes. Tests of the null 

hypothesis Ho:µ1 = ... = µJ , where J represents the number of groups, are inappropriate because 

failing to reject Ho does not imply that the groups are equal, and further, the probability of 

declaring the groups equivalent decreases (instead of increases) as sample size increases. Instead, 

tests of equivalence allow researchers to evaluate whether differences among groups are too 

small to be considered meaningful, where the researcher controls what difference is no longer 

meaningful. Although tests of equivalence are relatively new to educational researchers, it is 

expected that as these tests become more popular researchers will be able to use equivalence 

tests to address novel research questions that were previously avoided due a lack of appropriate 

methodology. The results of this paper suggest that educational researchers conducting one-way 

tests of equivalence (i.e., assessing the equivalence of multiple independent groups) should 

utilize a one-way equivalence test (such as that proposed by Wellek, 2003), rather than utilizing 

a pairwise approach to assessing the equivalence of the means, in order to ensure that Type I 

error rates are accurate and power is maximized. Relative to the one-way equivalence test 
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evaluated in this study, pairwise approaches generally produced conservative results that are thus 

less powerful for detecting true equivalencies among means. 
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Table 1. 

Population mean (μj) configurations used in the Monte Carlo study. 

 

 

 

Configuration Type  Type I Error Condition  Power Conditions  
     J = 3  

Not Equally Spaced  μj = 0, 0, 1    μj = 0, 0, .8 

         μj = 0, 0, .6  
Equally Spaced  μj = 0, .5, 1    μj = 0, .4, .8 

         μj = 0, .3, .6  
     J = 5  

Not Equally Spaced  μj = 0, 0, 0, 1, 1    μj = 0, 0, 0, .8, .8 

         μj = 0, 0, 0, .6, .6  
Equally Spaced  μj = 0, .25, .5, .75, 1    μj = 0, .2, .4, .6, .8 

         μj = 0, .15, .3, .45, .6   
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Table 2.  

Probability of declaring three normally distributed populations equivalent, with the population 

mean pattern for declaring equivalence equal to µ1 = 0, µ2 = 0, µ3 = 1.    

       

  

 

µ1, µ2, µ3 n1, n2, n3  ε Wellek  D S_P SW_P S_L SW_L  
      Type I Error Results 

 

0, 0, 1  20, 20, 20 .816 .049  1 .012 .012 .013 .013 

  15, 20, 25 .866 .051  1 .010 .010 .011 .011  

  10, 20, 30 .913 .054  1 .007 .007 .011 .011  

  75, 75, 75 .816 .046  1 .010 .010 .014 .014  

  70, 75, 80 .830 .048  1 .011 .011 .013 .013  

  60, 75, 90 .856 .050  1 .011 .011 .011 .011   
      Power Results 

 

0, 0, .8  20, 20, 20 .816 .163  1 .056 .055 .057 .057  

  15, 20, 25 .866 .175  1 .049 .048 .052 .052  

  10, 20, 30 .913 .199  1 .036 .033 .045 .045  

  75, 75, 75 .816 .391  1 .188 .187 .190 .189  

  70, 75, 80 .830 .396  1 .175 .174 .179 .178  

  60, 75, 90 .856 .409  1 .177 .177 .178 .178  
0, 0, .6  20, 20, 20 .816 .389  1 .181 .181 .186 .185  

  15, 20, 25 .866 .424  1 .168 .164 .172 .171  

  10, 20, 30 .913 .445  1 .121 .110 .145 .144  

  75, 75, 75 .816 .857  1 .671 .671 .672 .672  

  70, 75, 80 .830 .868  1 .674 .674 .676 .676  

  60, 75, 90 .856 .882  1 .666 .664 .668 .666   
Note: ε = equivalence interval for the equivalence F-test; Wellek = equivalence F-test; D = 

equivalence interval for the Schuirmann equivalence t-test; S_P = Pairwise Schuirmann test of 

equivalence; SW_P = Pairwise Schuirmann-Welch test of equivalence; S_L = Schuirmann test of 

equivalence on the largest pairwise mean difference; SW_L = Schuirmann-Welch test of 

equivalence on the largest pairwise mean difference. 
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Table 3.  

Probability of declaring three normally distributed populations equivalent, with the population 

mean pattern for declaring equivalence equal to µ1 = 0, µ2 = .5, µ3 = 1.    

       

  

 

µ1, µ2, µ3 n1, n2, n3  ε Wellek  D S_P SW_P S_L SW_L  
      Type I Error Results 

 

0, .5, 1  20, 20, 20 .707 .046  1 .036 .035 .036 .035  

  15, 20, 25 .707 .055  1 .037 .036 .037 .036  

  10, 20, 30 .707 .062  1 .032 .034 .032 .034  

  75, 75, 75 .707 .048  1 .048 .048 .048 .048  

  70, 75, 80 .707 .048  1 .049 .049 .049 .049  

  60, 75, 90 .707 .052  1 .048 .048 .048 .048   
      Power Results 

 

0, .4, .8 20, 20, 20 .707 .141  1 .108 .108 .108 .108  

  15, 20, 25 .707 .146  1 .102 .102 .102 .102  

  10, 20, 30 .707 .169  1 .093 .089 .093 .089  

  75, 75, 75 .707 .327  1 .339 .339 .339 .339  

  70, 75, 80 .707 .314  1 .322 .322 .322 .322  

  60, 75, 90 .707 .336  1 .333 .333 .333 .333  
0, .3, .6 20, 20, 20 .707 .316  1 .260 .259 .260 .259  

  15, 20, 25 .707 .322  1 .247 .240 .247 .240  

  10, 20, 30 .707 .325  1 .195 .190 .195 .190  

  75, 75, 75 .707 .762  1 .779 .779 .779 .779  

  70, 75, 80 .707 .761  1 .783 .783 .783 .783  

  60, 75, 90 .707 .763  1 .774 .772 .774 .772  
Note: ε = equivalence interval for the equivalence F-test; Wellek = equivalence F-test; D = 

equivalence interval for the Schuirmann equivalence t-test; S_P = Pairwise Schuirmann test of 

equivalence; SW_P = Pairwise Schuirmann-Welch test of equivalence; S_L = Schuirmann test of 

equivalence on the largest pairwise mean difference; SW_L = Schuirmann-Welch test of 

equivalence on the largest pairwise mean difference. 
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Table 4.  

Probability of declaring five normally distributed populations equivalent, with the population 

mean pattern for declaring equivalence equal to µ1 = 0, µ2 = 0, µ3 = 0, µ4 = 1, µ5 = 1.  

         

  

 

µ1, µ2, µ3,µ4,µ5 n1,n2,n3,n4,n5  ε Wellek  D S_P SW_P S_L SW_L  
      Type I Error Results 

 

0,0,0,1,1 20, 20, 20, 20, 20 1.095 .050  1 .000 .000 .000 .000 

  14, 17, 20, 23, 26 1.136 .056  1 .000 .000 .000 .000 

  10, 15, 20, 25, 30 1.162 .055  1 .000 .000 .000 .000 

  75, 75, 75, 75, 75 1.095 .052  1 .001 .001 .001 .001 

  65, 70, 75, 80, 85 1.114 .053  1 .000 .000 .000 .000 

  55, 65, 75, 85, 95 1.131 .052  1 .000 .000 .000 .000  
      Power Results 

 

0,0,0,.8,.8 20, 20, 20, 20, 20 1.095 .224  1 .004 .004 .005 .005 

  14, 17, 20, 23, 26 1.136 .240  1 .003 .003 .004 .004 

  10, 15, 20, 25, 30 1.162 .251  1 .002 .002 .004 .004 

  75, 75, 75, 75, 75 1.095 .567  1 .032 .032 .033 .033 

  65, 70, 75, 80, 85 1.114 .574  1 .033 .032 .037 .037 

  55, 65, 75, 85, 95 1.131 .578  1 .028 .027 .030 .029  
0,0,0,.6,.6 20, 20, 20, 20, 20 1.095 .555  1 .033 .033 .037 .037 

  14, 17, 20, 23, 26 1.136 .575  1 .024 .023 .030 .032 

  10, 15, 20, 25, 30 1.162 .592  1 .019 .020 .027 .029 

  75, 75, 75, 75, 75 1.095 .972  1 .402 .402 .404 .404 

  65, 70, 75, 80, 85 1.114 .975  1 .406 .405 .409 .408 

  55, 65, 75, 85, 95 1.131 .978  1 .393 .391 .397 .396  
Note: ε = equivalence interval for the equivalence F-test; Wellek = equivalence F-test; D = 

equivalence interval for the Schuirmann equivalence t-test; S_P = Pairwise Schuirmann test of 

equivalence; SW_P = Pairwise Schuirmann-Welch test of equivalence; S_L = Schuirmann test of 

equivalence on the largest pairwise mean difference; SW_L = Schuirmann-Welch test of 

equivalence on the largest pairwise mean difference. 
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Table 5.  

Probability of declaring five normally distributed populations equivalent, with the population 

mean pattern for declaring equivalence equal to µ1 = 0, µ2 = .25, µ3 = .5, µ4 = .75, µ5 = 1.  

         

  

 

µ1, µ2, µ3,µ4,µ5 n1,n2,n3,n4,n5  ε Wellek  D S_P SW_P S_L SW_L  
      Type I Error Results 

 

0,.25,.5,.75,1 20, 20, 20, 20, 20 .791 .053  1 .010 .010 .012 .012 

  14, 17, 20, 23, 26 .791 .056  1 .010 .009 .010 .011 

  10, 15, 20, 25, 30 .791 .060  1 .006 .005 .007 .007 

  75, 75, 75, 75, 75 .791 .050  1 .030 .030 .033 .033 

  65, 70, 75, 80, 85 .791 .052  1 .034 .034 .035 .035 

  55, 65, 75, 85, 95 .791 .051  1 .033 .033 .034 .035  
      Power Results 

 

0,.2,.4,.6,.8 20, 20, 20, 20, 20 .791 .156  1 .038 .038 .039 .039 

  14, 17, 20, 23, 26 .791 .162  1 .035 .034 .043 .043 

  10, 15, 20, 25, 30 .791 .168  1 .028 .027 .038 .038 

  75, 75, 75, 75, 75 .791 .370  1 .290 .290 .290 .290 

  65, 70, 75, 80, 85 .791 .377  1 .287 .288 .288 .288 

  55, 65, 75, 85, 95 .791 .365  1 .271 .269 .272 .273  
0,.15,.3,.45,.6 20, 20, 20, 20, 20 .791 .336  1 .106 .106 .115 .115 

  14, 17, 20, 23, 26 .791 .336  1 .096 .096 .112 .112 

  10, 15, 20, 25, 30 .791 .344  1 .069 .067 .093 .097 

  75, 75, 75, 75, 75 .791 .832  1 .753 .753 .754 .754 

  65, 70, 75, 80, 85 .791 .835  1 .745 .746 .747 .747 

  55, 65, 75, 85, 95 .791 .831  1 .721 .723 .722 .723  
Note: ε = equivalence interval for the equivalence F-test; Wellek = equivalence F-test; D = 

equivalence interval for the Schuirmann equivalence t-test; S_P = Pairwise Schuirmann test of 

equivalence; SW_P = Pairwise Schuirmann-Welch test of equivalence; S_L = Schuirmann test of 

equivalence on the largest pairwise mean difference; SW_L = Schuirmann-Welch test of 

equivalence on the largest pairwise mean difference. 


