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 Pairwise Multiple Comparisons:
 New Yardstick, New Results

 ROBERTA. CRIBBIE
 York University (Canada)

 ABSTRACT. Behavioral science researchers often wish to compare the means of sev
 eral treatment conditions on a specific dependent measure. The author used a Monte
 Carlo study to compare familywise error controlling multiple comparison proce
 dures (MCPs; e.g., Tukey, Bonferroni) with MCPs that were not developed to control
 the familywise error rate on the probability of correctly identifying the true under
 lying population mean configuration (true model rate). Recently proposed MCPs
 that are not intended to control the familywise error rate had consistently larger true

 model rates than did familywise error controlling MCPs. Furthermore, of the fami
 lywise error controlling MCPs investigated, the popular Tukey and Bonferroni

 MCPs had consistently lower true model rates than did other familywise error con
 trolling MCPs.

 Key Words: false discovery rate, model testing, multiple comparison procedures,
 true model rate

 A RESEARCHER CONDUCTING A STUDY with more than two groups is
 often interested in determining if there are statistically significant mean differ
 ences among the groups on a dependent measure. For example, a researcher may
 wish to determine if overall course ratings differ for lecture, seminar, or comput
 er-mediated classroom formats. In that type of experiment, researchers often
 want to know if there are any statistically significant differences between any
 pair of formats. For example, do the ratings of students in lecture-format classes
 differ from the ratings of students in seminar-format classes? Hypotheses con
 cerning differences between two group means are referred to as pairwise com
 parisons.

 Researchers testing pairwise null hypotheses are faced with important decisions
 regarding error control, including the selection of a significance level (a), a unit
 of analysis, and a specific multiple comparison procedure (MCP). First, a speci
 fies the probability of rejecting a true null hypothesis (i.e., a Type I error). As a
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 decreases, researchers can be more confident that rejection of the null hypothesis
 signifies a true difference between population means, although the probability of
 not detecting a false null hypothesis (i.e., a Type II error) increases and the prob
 ability of rejecting a false null hypothesis (i.e., power) decreases (assuming that
 all other factors, e.g., sample size, are held constant). Researchers faced with the
 difficult, yet important, task of quantifying the relative importance of Type I and
 Type II errors have traditionally selected some accepted level of significance, such
 as a = .05 (see e.g., Shaffer, 1995). When multiple hypotheses are being tested,
 researchers must specify not only a but also the unit of analysis over which Type
 I error control will be applied and the MCP that will be used.

 Unit of Analysis

 Several different units of analysis (i.e., error rates) have been proposed in the
 multiple comparison literature. Although the majority of the literature has
 focused on the comparisonwise and familywise error rates (e.g., Ryan, 1959;
 Toothaker, 1991; Tukey, 1953), other error rates, such as the false discovery rate
 (Benjamini & Hochberg, 1995), have also been proposed.

 Comparisonwise Error Rate

 The comparisonwise error rate (occ) is defined as the expected proportion of
 falsely rejected null hypotheses. In conducting all pairwise comparisons in a one
 way completely randomized design, the comparisonwise error rate can be
 defined as

 ac = a = P (Reject Hc I Hc is true),

 where Hc represents the c = 1,. . . , C, pairwise null hypotheses (Hc: p,7-= \ij>,j ?
 y). In a review of the Bulletin of the Psychonomic Society, Gaito and Nobrega
 (1981) found that in almost half (49.1%) of the studies in which multiple com
 parisons were performed (Xc control was applied, although the authors of a more
 recent evaluation of the educational and psychological literature found that only
 about 10% of researchers performing pairwise comparisons applied occ control
 (Keselman et al., 1998). A number of authors in the MCP field have recom

 mended etc control over other proposed error rates (e.g., Carmer & Walker, 1985;
 Davis & Gaito, 1984; Rothman, 1990; Saville, 1990; Wilson, 1962), providing a
 few simple, but convincing, arguments.

 Saville (1990) argued that the natural unit of analysis is the comparison.
 Researchers conducting pairwise comparisons are often interested in which treat
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 ment groups differ, not in the overall pattern of treatment group differences. Thus,

 the objectives of the research are the same if C pairwise comparisons are tested in
 one experiment or if one comparison is tested in each of C experiments. Therefore,
 it does not make sense to control a over the entire experiment. As Saville (1990)
 stated, "an experiment is no more a natural unit than a project consisting of sever
 al experiments or a research program consisting of several projects" (p. 177).

 A second argument in favor of occ control is that real differences between treat
 ment groups are more likely with a greater number of treatment groups (Duncan,
 1955; Hancock & Klockars, 1996). In real experiments the likelihood that all
 treatment groups are unequal is greater than the likelihood that all treatment
 groups are equal (Saville, 1990). Therefore, emphasis in experiments should be
 not on controlling for unlikely Type I errors but in obtaining the most power for
 detecting even small differences between treatments.

 Furthermore, suppose Experimenter 1 is testing for differences between two
 treatments, A and B, and finds them to be significantly different. Experimenter 2,

 also testing for differences between treatments A and B, decides to explore dif
 ferences between the first two treatments and treatment C as well. Invoking con
 trol of a over all pairwise comparisons, Experimenter 2 finds the same treatment
 effect for the difference between treatments A and B as does Experimenter 1 but
 reports no statistically significant difference between those treatments. Experi

 menter 2, restricting the maximum rate of Type I errors at a over all three com
 parisons, has less power for detecting individual treatment effects and conse
 quently finds results inconsistent with those of Experimenter 1. That
 inconsistency is widely recognized by multiple comparison researchers and was
 highlighted by Wilson (1962) and Saville (1990). Saville declared that a proce
 dure is inconsistent if the probability of finding two populations significantly dif
 ferent is affected by the number of populations or by the values of the sample
 means from the other populations. To avoid inconsistency between experiments
 researchers are advised to use consistent procedures in their analyses (i.e., occ
 control), and inconsistent results in the literature can easily be discovered and
 discarded through replication (Davis & Gaito, 1984).

 Last, one of the primary advantages of ac control is convenience. One evalu
 ates each of the C pairwise treatment effects by using any appropriate test statis
 tic and comparing that statistic with an a-level critical value. Hancock and

 Klockars (1996) summarized the convenience of occ control by stating that "if
 this perspective were unilaterally adopted, virtually all multiple comparisons

 would be easily conducted with t-tests using liberal critical values, and the MCP
 researcher would be unemployed" (p. 272).

 However, comparisonwise a control is not without drawbacks. The primary
 disadvantage of ac control with pairwise comparisons is that the probability of
 making at least one Type I error increases with the number of comparisons,
 approaching l-(l-oc)c where l-(l-oc)c would be the probability of making at
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 least one Type I error assuming all comparisons were independent. Therefore, the
 more treatment groups that a researcher includes in his or her experiment the
 more likely it is that one or more comparisons will be statistically significant
 simply by chance.

 Familywise Error Rate

 The familywise error rate (ocF) is defined as the probability of falsely reject
 ing one or more hypotheses in a family of hypotheses. Many researchers have
 recommended controlling aF (e.g., Hancock & Klockars, 1996; Petrinovich &
 Hardyck, 1969; Ryan, 1959, 1962; Tukey, 1953), which is "the most common
 ly endorsed approach to accomplishing Type I error control" (Seaman, Levin,
 & Serlin, 1991, p. 577). Keselman et al. (1998) reported that approximately
 85% of researchers conducting pairwise comparisons adopt some form of ocF
 control.

 The main advantage of ocF control is that the probability of making a Type I
 error does not increase with the number of comparisons conducted in the exper
 iment. In the previous example used to demonstrate the consistency of occ con
 trol, I also demonstrated the advantage of aF control. If Experimenter 1 con
 ducts one comparison at a = .05 and Experimenter 2 conducts three
 comparisons, each at a = .05, Experimenter 1 has a 5% chance of making at
 least one Type I error, whereas Experimenter 2 has almost a 15% chance of

 making a Type I error. The increased risk of Type I errors with occ control affects
 both the conclusions of individual experiments as well as the theories based on
 the results of those experiments. As Petrinovich and Hardyck (1969) pro
 claimed, "it is better to punish truth than to let falsehood gain respectability" (p.
 52). Journal editors in the behavioral sciences have adopted this principle
 almost exclusively to minimize the number of errors in the published literature
 (Petrinovich & Hardyck, 1969; Sato, 1996).

 One of the main disadvantages of procedures that control ocF is that qlq decreas
 es, often substantially, as the number of treatment groups increases. Therefore,

 MCPs that control ocF have reduced power for detecting treatment effects when
 there are many comparisons, increasing the potential for inconsistent results
 between experiments (Miller, 1981). As Holland and Cheung (2002) contend,
 "procedures that control [ocF] lose their attractiveness in large data environments
 with a wide range of possible family sizes" (p. 2)

 False Discovery Rate (FDR)

 Benjamini and Hochberg (1995) presented a compromise between strict ocF
 control and liberal Oc control, namely, the false discovery rate. The FDR is
 defined as the expected ratio (Q) of the number of erroneous rejections (V) to the
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 total number of rejections (R = V + S), where S represents the number of true
 rejections (Benjamini, Hochberg, & Kling, 1994). Therefore, E (Q) = E (V/[V +
 S]) = E (V/R).

 The relationship between FDR control and other error rates was summarized
 by Benjamini et al. (1994). If all null hypotheses are true, FDR = ccF. On the other
 hand, if a subset of the null hypotheses is false FDR < ocF, resulting in an increase
 in power relative to ocF control. The basis for FDR control is that as the number

 of comparisons increases, the expected number of false null hypotheses also
 increases, and thus a procedure that offers greater power as the number of com
 parisons increases is justified.

 MCPs

 With a pairwise MCP, one can test hypotheses either simultaneously, sequen
 tially, or through model selection. In a simultaneous MCP, all comparisons are con
 ducted regardless of whether an omnibus test, or any other comparison, is statisti
 cally significant. Examples of simultaneous pairwise MCPs include the
 comparisonwise error control approach, Tukey's (1953) MCP, and Bonferroni's
 (1937) MCP.

 Comparisonwise Error Control (CEC). A simple method for conducting all
 pairwise comparisons is to reject Hc if tc > t (a, v), where tc represents the value
 from an appropriate two-sample test statistic (e.g., two independent-samples t
 test [Welch, 1938]; nonpooled t test) and v represents the error degrees of free
 dom. The CEC procedure controls aC = a, but aF can greatly exceed a as the
 number of comparisons increases. Note that this procedure differs from Fisher's
 least significant difference procedure in that no omnibus test is used.

 Tukey. In Tukey's honestly significant difference (HSD) MCP, a critical value
 obtained from the Studentized Range (q) distribution is used, and control of aF
 can be obtained. Tukey rejects Hc if tc > q (a, J, v)/(2)1/2. With unequal sample
 sizes, the Tukey-Kramer modified statistic is adopted.

 Bonferroni. With the Bonferroni (1937) procedure, which also controls aF, Hc
 is rejected if tc > t (OpC, v) where OpC = a/C.

 In a sequential MCP, either the significance of an omnibus test or the signifi
 cance of other comparisons (or both) is considered in evaluating the significance
 of a particular comparison. Examples of sequential MCPs include Hayter's
 (1986) MCP, the REGWQ MCP (Einot & Gabriel, 1975; Ryan, 1960; Welsch,
 1977) and the FDR MCP (Benjamini & Hochberg, 1995).
 Hay ter. Hayter (1986) proposed a modification to the popular Fisher (1935)

 least significant difference procedure that provides consistent control over aF. Hc is

 rejected if the omnibus test is statistically significant and tc > q (a, J-l, v)/(2)1/2.

 REGWQ. Ryan (1960), Einot and Gabriel (1975), and Welsch (1977) proposed
 a sequential MCP that controls aF at a. The REGWQ procedure sequentially
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 tests all ordered mean differences for stretch sizes (inclusive range of the ranks

 of the means) p = J, J-l, . . . , 2, and rejects Hc if

 tc>q(ap,p,vy(2)1/2,

 where Op = a for p = J, J-l, and Op = 1 - (1 - a)p/J, for p = J-2,.. ., 2. If any Hcs
 are retained for p = p', then all Hcs contained in that stretch are retained and are
 not tested at later stages (i.e., p < p'). If all Hcs are retained for p = p', then all
 Hcs with p < p' are retained.

 FDR. Benjamini and Hochberg (1995) proposed controlling the FDR, as a
 compromise between strict aF and liberal Oc control. With the FDR MCP, the
 pairwise test statistics are first ordered from largest to smallest, and testing pro
 ceeds from the largest to smallest test statistic (c = C, C -1, . . ., 1). Hc is reject
 ed if tc > t (ac, v), where ac = a (c/C). In addition, if Hc is rejected, then all Hc>
 (c' < c) are also rejected.

 In model testing procedures, possible population mean configurations are
 compared and the configuration (model) that best accounts for differences among
 the populations is selected. For example, Dayton (1998) recently introduced a
 protected model testing procedure that provides a very logical theory for testing
 pairwise multiple comparisons and that can be applied with unequal variances,
 nonnormal data, or both.

 MTP. Dayton (1998) proposed a model testing procedure (MTP) based on
 Akaike's information criteria (AIC). One evaluates mutually exclusive and tran
 sitive models by using AIC (assuming that an appropriate omnibus null hypoth
 esis has been rejected) and retains the model that has the minimum AIC as the
 most probable population mean configuration, where

 j

 AIC = SSe +1 nj (xj- xmj)2 + 2q
 7=1

 SSe is the error sums of squares from an omnibus analysis of variance, (x) is the
 estimated sample mean for thejth group, xmj is the estimated sample mean for the
 jth group given the hypothesized population mean configuration for the rath
 model, and q is the number of independent parameters evaluated in the model. A
 protected version of the MTP procedure (where the MTP procedure is conduct
 ed only if an omnibus test of mean equality is statistically significant, and the
 complete null mean configuration is retained if the omnibus test is nonsignifi
 cant) has been recommended by Dayton to improve the accuracy of the proce
 dure when all population means are equal, and a slightly modified version of the
 AIC statistic is adopted with heterogeneous variances (see Dayton). To illustrate
 the procedure, with 7 = 4 (and ordered means) there would be 2y_1 = 8 mutually
 exclusive and transitive models to be evaluated ([1234], [1, 234], [12, 34], [123,
 4], [1, 2, 34], [12, 3, 4], [1, 23, 4], [1, 2, 3, 4]). To illustrate, the model [12, 3, 4]
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 postulates a population mean configuration where Groups 1 and 2 are derived
 from the same population, but Groups 3 and 4 each represent independent popu
 lations. The model having the lowest AIC value would be retained as the most
 probable population model.

 Comparing Error Rates and MCPs

 The most common approach for comparing the performance of pairwise
 MCPs is through Monte Carlo studies that evaluate the Type I error control and
 power of the procedures under various testing conditions. More specifically, the
 approach commonly adopted by multiple comparison researchers in recom
 mending a specific MCP is to use a two-step approach: a) determine if the MCP
 provides consistent control of the familywise error rate; and b) assuming the
 familywise error rate is controlled at approximately a, recommend the MCP
 with the most power. Power is often defined with respect to per-pair power (the
 average probability of rejecting a false Hc) or all-pairs power (the average prob
 ability of rejecting all false Hcs). Utilizing this approach results in researchers
 adopting only procedures that control the familywise error rate, including pop
 ular procedures such as the Bonferroni and Tukey MCPs. On the other hand,
 procedures such as the CEC and the FDR are not recommended because they do
 not control aF at a. However, a serious limitation of this approach is that rec
 ommendations concerning MCPs are made while considering the Type I error
 control and the power of the procedures separately instead of simultaneously.
 However, an innovative approach to comparing pairwise MCPs is the compari
 son of true model rates (Cribbie & Keselman, in press), which can be defined as
 the average probability of identifying the correct underlying population mean
 configuration (typically the goal of researchers using MCPs). With that
 approach, recommendations concerning MCPs are made while simultaneously
 considering the Type I error control and power of the procedures. In other
 words, to identify the true underlying population mean configuration, one
 should use a procedure that does not reject any true pairwise Hcs and rejects all
 false pairwise Hcs.

 Therefore, my goal in this research was to compare the true model rates of
 popular familywise error controlling MCPs such as the Tukey and Bonferroni
 procedures with that of less popular (or recently proposed) MCPs such as the
 CEC, Hayter, REGWQ, FDR, and MTP, which might potentially provide a bet
 ter chance of identifying the true underlying population mean configuration.

 Method

 I used a simulation study to compare the true model rates of the CEC, Tukey,
 Bonferroni, Hayter, REGWQ, FDR and protected MTP procedures. For the MTP
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 procedure, the true model rate is defined as the probability of selecting the correct
 model with the AIC statistic, and for the remaining MCPs, the true model rate is
 defined as the probability of rejecting all false pairwise null hypotheses and not
 rejecting any true pairwise null hypotheses. In addition to manipulating the MCPs,
 the following six variables were manipulated in this study: (a) number of levels of
 the independent variable (7 = 4 and 7=7); (b) total sample size (average n? =10,
 15, and 25); (c) degree of sample size imbalance (equal nj9 moderately unequal np
 and extremely unequal n/, see Table 1 for the specific sample size conditions); (d)
 degree of variance inequality (equal variances, largest to smallest variance ratio of
 4:1, and largest to smallest variance ratio of 8:1; see Table 1 for the specific vari
 ance conditions); (e) pairings of unequal group sizes and variances (positively
 paired, where the largest sample size is paired with the largest variance and small
 est sample size with the smallest variance, and negatively paired, where the largest
 sample size is paired with the smallest variance and the smallest sample size is
 paired with the largest variance); and (f) population mean configuration (complete
 null, partial null, and complete nonnull mean configurations were used in the study;

 TABLE 1
 Sample Sizes and Population Variances Used in the Simulation Study

 7 Sample sizes Population variances

 4 10, 10, 10, 10 1, 1, 1, 1

 9, 10, 10, 11 1,2,4,4
 5,8,12,15 1,3,5,8
 15, 15, 15, 15
 13, 15, 15, 17
 7, 12, 18, 23
 25, 25, 25, 25
 20, 25, 25, 30
 10, 20, 30, 40

 7 10, 10, 10, 10, 10, 10, 10 1, 1, 1, 1, 1, 1, 1
 9,9, 10, 10, 10, 11, 11 1, 1,2,2,3,3,4
 5,6,8, 10, 12, 14, 15 1,2,2,4,7,7,8
 15, 15, 15, 15, 15, 15, 15
 13, 14, 15, 15, 15, 16, 17
 7,9, 12, 15, 18,21,23
 25, 25, 25, 25, 25, 25, 25
 20, 22, 24, 25, 26, 28, 30
 10, 15, 20, 25, 30, 35, 40
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 see Table 2 for the specific mean configurations). The Welch (1938, 1951) het
 eroscedastic test statistics were used for all pairwise and omnibus tests, respective
 ly. The sample size and variance conditions investigated in this study were expect
 ed to parallel data characteristics encountered by applied researchers (see
 Keselman et al., 1998). The nonnull mean configurations adopted in this study pro

 vided a priori omnibus powers of 50%, 70%, and 90% with njS of 10, 15, and 25,
 respectively, assuming equal sample sizes and variances. Those values are expect
 ed to represent the power achieved in many behavioral science investigations.

 The simulation program was written in SAS/IML (SAS Institute, Inc., 1989).
 Pseudorandom normal vari?tes were generated with the SAS generator RANNOR

 (SAS Institute, Inc., 1985). If Ztj is a standard normal deviate, then Xy = u7 + (ay
 Zij) is a normal var?ate with mean Uj and variance a2,-. Five thousand replications
 were performed for each condition, using a nominal significance level of .05.

 Results

 To facilitate a discussion of the findings, I reduced the true model rates for the

 sample size equality and inequality and variance equality and inequality condi
 tions into the three following classifications: (a) equal sample sizes or variances,
 (b) positively paired sample sizes and variances, and (c) negatively paired sam
 ple sizes and variances. Because the pattern of results was similar across the three

 TABLE 2
 Population Mean Configurations Used in the Simulation Study

 Population means
 ui u2 u3 u4 u5 U6 u7

 J = 4
 0.000 0.000 0.000 0.000
 0.000 0.000 0.000 0.917
 0.000 0.000 0.477 0.954
 0.000 0.000 0.791 0.791
 0.000 0.353 0.706 1.059

 J = 7
 0.000 0.000 0.000 0.000 0.000 0.000 0.000
 0.000 0.000 0.000 0.000 0.000 0.000 0.970
 0.000 0.000 0.000 0.000 0.000 0.750 0.750
 0.000 0.000 0.000 0.366 0.732 0.732 0.732
 0.000 0.000 0.450 0.450 0.450 0.900 0.900
 0.000 0.169 0.338 0.507 0.676 0.845 1.014
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 sample size conditions, only the results for the largest sample size condition are
 presented. True model rates under the complete null were, as expected, close to
 95% for all procedures, except for the CEC procedure, which does not control for

 multiplicity and therefore had deflated true model rates under the complete null
 (see Tables 3 and 4). True model rate results for all mean configuration condi
 tions as well as for the nonnull mean configuration conditions are discussed next.

 Overall True Model Rates

 True model rates for all mean configurations are presented in Table 3 (7 = 4)
 and Table 4 (7 = 7). For 7 = 4 and equal sample size or variances, true model rates
 were considerably higher for the MTP procedure (39.83%) than for any of the
 remaining procedures (26.18% to 31.20%). Furthermore, the results for the lib
 eral Type I error controlling procedures (CEC, FDR) were higher than were the
 rates for the aF controlling procedures, with true model rates for the Tukey and
 Bonferroni aF controlling procedures (26.86% and 26.18%, respectively) the
 lowest of all procedures. When variances and sample sizes were unequal, the

 MTP procedure again had considerably higher true model rates than any of the
 remaining procedures, with rates reaching more than 10% higher than those of
 the Bonferroni and Tukey aF controlling procedures. Moreover, the CEC proce
 dure performed comparatively worse with unequal sample sizes and variances.

 For 7=7, the true model rates were highest for the FDR, MTP, and REGWQ
 procedures, although the differences were not substantial. As expected, true
 model rates for all procedures decreased from 7 = 4 to 7 = 7, as the probability

 TABLE 3
 True Model Rate Percentages forJ = 4 and N = 100

 All mean Nonnull mean Complete null mean
 configurations configurations configurations

 = nj/a2j PP NP =nj/a2j PP NP = rc/a2,- PP NP

 CEC 31.06 21.14 19.30 18.85 6.34 3.85 79.02 80.35 81.22
 Bonferroni 26.18 20.30 19.70 8.76 1.38 0.54 95.87 95.99 96.36
 Tukey 26.86 20.33 19.68 9.91 1.70 0.75 94.68 94.85 95.39
 Hayter (W) 29.47 21.35 20.21 13.10 2.92 1.43 94.96 95.08 95.33
 REGWQ(W) 30.46 21.83 20.56 14.22 3.41 1.63 95.43 95.54 96.27
 FDR 31.20 22.22 20.85 15.09 3.85 2.11 95.66 95.72 95.83
 MTP(W) 39.83 27.09 31.08 26.04 10.11 15.10 94.90 95.08 94.52

 Note. N = total sample size; = n/(52j = equal sample sizes or variances; PP and NP = positive
 and negative pairings of sample sizes and variances, respectively; (W) = Welch omnibus test.
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 TABLE 4
 True Model Rate Percentages for J =7 and N -175

 All mean Nonnull mean Complete null mean
 configurations configurations configurations

 = nj/?2j PP NP =n/G2j PP NP = w/a2,- PP NP

 CEC 16.55 11.49 10.81 8.49 2.44 1.34 56.86 56.72 58.16
 Bonferroni 17.76 16.17 16.05 2.13 0.24 0.05 95.90 95.80 96.17
 Tukey 17.99 15.98 15.83 2.74 0.33 0.07 94.24 94.25 94.63
 Hayter (W) 18.65 16.23 15.97 3.29 0.43 0.10 95.47 95.24 95.30
 REGWQ(W) 20.27 16.68 16.33 5.06 0.81 0.19 96.30 96.04 97.03
 FDR 21.08 16.88 16.27 6.12 1.08 0.33 95.88 95.87 95.99
 MTP(W) 21.90 16.42 16.85 7.28 0.70 1.22 94.24 94.46 93.81

 Note. N = total sample size; = n/G2j = equal sample sizes or variances; PP and NP = positive
 and negative pairings of sample sizes and variances, respectively; (W) = Welch omnibus test.

 of detecting the correct pattern of mean differences became much more difficult
 with 21 pairwise comparisons than with 6 pairwise comparisons. However, true
 model rates for the CEC procedure were especially affected by the increased
 number of levels of the independent variable, especially with unequal sample
 sizes and variances.

 True Model Rates for the Nonnull Cases

 True model rates for only the nonnull mean configurations are presented in
 Table 3 (7 = 4) and Table 4 (7 = 7). For 7 = 4, true model rates with equal sam
 ple sizes or variances were considerably higher for the MTP procedure (26.04%)
 than for any of the remaining procedures (8.76% to 18.85%). Similar to the over
 all true model rate results, the results for the liberal Type I error controlling pro
 cedures (CEC, FDR) for the nonnull cases were higher than were the rates for the
 aF controlling procedures, withjrue model rates for the Tukey and Bonferroni ocF
 controlling procedures the lowest of all procedures. When sample sizes and vari
 ances were unequal, the Type I error rates of all procedures decreased substan
 tially. However, the true model rates for the MTP were again notably higher than
 the rates for the remaining procedures, and the true model rates for the liberal

 MCPs (CEC, FDR) were higher than the rates for the ocF controlling procedures.
 For 7 = 7 the true model rates, as for 7 = 4, were severely deflated for the non

 null mean configuration conditions, with the pattern of nonnull true model rates

 again similar to that for all conditions. The true model rates were highest for the
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 FDR, MTP, CEC, and REGWQ procedures; the rates for the Tukey (2.74%) and
 Bonferroni (2.13%) with equal sample sizes or variances were less than half of
 the rates for the FDR, CEC, and MTP procedures.

 Discussion

 Researchers in the behavioral sciences are often confronted with the task of

 evaluating mean differences in studies with more than two levels of the indepen
 dent variable. In that situation, researchers are confronted with the task of select

 ing not only an appropriate error rate to control but also a multiple comparison
 procedure that controls the selected error rate. Those decisions are anything but
 clear. With respect to selecting an appropriate error rate, there are important
 rationales for adopting comparisonwise error, familywise error, or false discov
 ery rate control, with the final decision often resting on the nature of the research.

 Given that fact, the current trend toward adopting MCPs that only control the
 familywise error rate seems nonsensical. On the other hand, what does make
 sense is to inform researchers about the consequences of their decisions, such as

 the likelihood of correctly detecting the underlying population mean configura
 tion with a specific strategy.
 With respect to selecting an appropriate MCP, the decision process is no less

 convoluted. For example, a researcher analyzing data from a one-way between
 subjects design with SPSS 10.0 (SPSS Inc., 2000) is provided with a selection of
 no less than 18 available multiple comparison procedures. It is then the respon
 sibility of the researcher to select the best procedure for analyzing his or her data.

 According to reviews of the literature, researchers faced with that decision often
 select popular procedures such as the Tukey procedure (Keselman et al., 1999 ).
 Energetic researchers interested in comparing the performance of available
 MCPs (and thus making an informed decision) are faced the problem that MCPs
 are almost always evaluated separately for Type I error control and power. Even
 though the goal of researchers is typically to identify the true pattern of mean dif
 ferences among their treatment conditions, the MCP literature is limited in that

 the reader is forced to independently try to fuse together Type I error and power
 results for specific procedures. For example, researchers are often instructed by

 MCP researchers, journal editors, textbook authors, and others to avoid MCPs
 such as the CEC procedure because there is an increase in the probability of Type
 I errors relative to familywise error controlling procedures (which is true) and to
 use MCPs such as the Tukey procedure because it provides good familywise
 error control (which is also true under some conditions). However, what the
 researcher is rarely told is what strategy provides the best opportunity to identi
 fy the true pattern of mean differences among the groups. For example, is the
 power advantage of the CEC procedure over the Tukey procedures enough to off
 set the increased probability of Type I errors?
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 In this study, I used the true model rate in an attempt to provide a clearer pic
 ture of the performance of available multiple comparison procedures. The true

 model rate provides a direct test of the probability of correctly identifying the
 true underlying population mean configuration. With four levels of the indepen
 dent variable, the model testing procedure recently proposed by Dayton (1998)
 had the highest true model rates of any of the procedures, with the FDR and CEC
 also having very respectable true model rates. The familywise error controlling
 procedures had the lowest true model rates of any of the investigated procedures,
 and the differences were magnified when only the nonnull cases were investigat
 ed. Those results are consistent with the results of Cribbie and Keselman (in
 press), who compared the MTP with familywise error controlling MCPs of Shaf
 fer (1986), Hayter (1986), and Hochberg (1988) with three, four, and five levels
 of the independent variable. Furthermore, the popular Bonferroni and Tukey pro
 cedures had the lowest true model rates of any of the familywise error control
 ling procedures. That is, even though the Bonferroni and Tukey procedures might
 be less likely to lead to a Type I error in the conventional approach to MCPs, the
 overall chance that the researcher will find the true pattern of relationships in the
 data is reduced in comparison with that of other available procedures.

 As the number of levels of the independent variable increased from four to
 seven, it became much more difficult for any of the procedures to identify the
 true underlying mean configuration. However, the familywise error controlling
 procedures continued to have lower true model rates than the FDR and MTP pro
 cedures, and the Tukey and Bonferroni procedures continued to have lower true
 model rates than the remaining familyise error controlling procedures (Hayter,
 REGWQ). Therefore, even though familywise error controlling procedures are
 supposed to be more reliable with an increased number of levels of the indepen
 dent variable because they reduce the risk of Type I error inflation, more liberal
 procedures such as the FDR MCP, and model testing procedures such as the
 MTP, outperform the familywise error controlling procedures with respect to
 identifying the true underlying population mean configuration.

 In summary, researchers are faced with important decisions regarding the selec
 tion of a multiple comparison procedure. In making those decisions, it is crucial
 for researchers to consider the nature of the study, including the relative impor
 tance of Type I errors, power, and the probability of correctly identifying the true

 population mean configuration. The results of the present study indicate that
 regardless of data characteristics (e.g., variance equality and inequality) or the

 MCP adopted, the probability of detecting the true underlying population mean
 configuration is very difficult with currently available procedures and is evidence
 of a need for more research into procedures that will provide a better opportunity
 of correctly detecting population mean configurations. However, given that a pri
 mary goal of researchers is to increase the probability of correctly identifying the
 true population mean configuration (i.e., not committing any Type I or Type II
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 errors), the results of the current study lend support for the adoption of recently
 proposed procedures such as the model testing procedure (Dayton, 1998) and the
 false discovery rate controlling procedure (Benjamini & Hochberg, 1995). Those
 procedures consistently provide the researcher with a better chance of determin
 ing the correct underlying pattern of the population means as compared with that
 of familywise error controlling procedures. On the other hand, if the nature of a
 study makes it mandatory that strict familywise error control be imposed,
 researchers are advised to use the REGWQ MCP instead of the popular Bonfer
 roni or Tukey MCPs, because the REGWQ procedure provides a better opportu
 nity of detecting the true population mean configuration.
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