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Abstract 

Randomized pretest-posttest-follow-up (RPPF) designs are often used for evaluating the 

effectiveness of an intervention. These designs typically address two primary research questions: 

1) Do the treatment and control groups differ in the amount of change from pretest to posttest? 

and 2) Do the treatment and control groups differ in the amount of change from posttest to 

follow-up? This study presents a model for answering these questions and compares it to recently 

proposed models for analyzing RPPF designs due to Mun, von Eye, & White (2009) using 

Monte Carlo simulation. The proposed model provides increased power over previous models 

for evaluating group differences in RPPF designs.  

 

Keywords: latent change modeling, longitudinal data, randomized pretest-posttest-follow-up 

designs. 
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An Improved Model for Evaluating Change in 

Randomized Pretest, Posttest, Follow-up Designs 

 Change is a process that is inevitably of interest to behavioral scientists, and interest in 

change is even more salient when it results (or is expected to result) from an intervention. Given 

this interest in the analysis of change, appropriate statistical techniques are necessary to 

accurately estimate the amount of change within a group or compare the amount of change 

across groups. The measurement of change has had a long, and often vibrant, history (e.g., Bryk 

& Raudenbush, 1987; Cronbach & Furby, 1970; Lord, 1967; Rogosa & Willett, 1983; Thurstone, 

1930; Williams & Zimmerman, 1977), with modern researchers understanding that the 

appropriate statistical technique needed for evaluating change depends on many factors, 

including the nature of the research question, the research design, and the number of time points 

with observed data. 

 A common longitudinal design in intervention research is the randomized pretest, 

posttest, follow-up (RPPF) design (see Rausch, Maxwell & Kelley, 2003). In this design, 

participants are randomly assigned to treatment and control conditions, where only participants 

in the treatment group receive the intervention. All participants are measured prior to the 

intervention (pretest), immediately following (or shortly after) the intervention (posttest), and at 

some time following the termination of the intervention (follow-up). Although it is well known 

that more time points allows a better estimate of the pattern of growth over time (e.g., Willett, 

1989), intervention studies rarely offer the opportunity to obtain multiple measurements between 

pretest and posttest or between posttest and follow-up. Further, these intermediate time points are 

often not relevant to the research questions addressed. For example, the two most common 
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research questions addressed by researchers utilizing RPPF designs are: 1) Do the groups differ 

in the amount of change from pretest to posttest? and 2) Do the groups differ in the amount of 

change from posttest to follow-up? In other words, clinicians are usually interested in both 

whether the intervention is effective as well as whether the treatment effects (if there are any) are 

sustained (or even accentuated) over time. 

 Many statistical approaches have been proposed for assessing change over time, or for 

investigating correlates of change over time, including paired-samples t-tests, analysis of 

variance (ANOVA), analysis of covariance (ANCOVA), multivariate analysis of covariance 

(MANCOVA), and multiple regression (Curran & Hussong, 2000). Structural equation modeling 

(SEM) and hierarchical linear modeling (HLM; also known as multilevel modeling) have also 

provided novel (and often improved) approaches to the analysis of change (e.g., Bryk & 

Raudenbush, 1987; Meredith & Tisak, 1990). Specific to RPPF designs, there has been 

considerable interest lately in latent change models (LCMs), which allow researchers to address 

questions related to group differences in changes across the three time points. In this paper we 

outline the statistical issues involved in measuring change and comparing changes across groups, 

discuss current LCMs for RPPF designs, and propose a simplified LCM for evaluating the 

primary research questions of researchers using RPPF designs. 

Traditional Approaches to Assessing Change over Time 

 Traditionally, there have been two popular methods for comparing the amount of change 

across multiple groups: ANCOVA and ANOVA on change (posttest-pretest) scores. Change 

scores are also commonly referred to as ‘difference scores’ or ‘gain scores’. Although most of 

the literature has focused on two time-point designs, this discussion is easily extended to three 
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time-point RPPF designs. More specifically, in RPPF designs the researcher typically 

investigates group differences in change across each pair of time points separately (i.e., pretest to 

posttest; posttest to follow-up), and thus, the only difference from a two time-point design is that 

the specific time points utilized differ across analyses. 

 When participants are randomly assigned to groups, comparing the groups on the 

outcome after covarying for the pretest will provide a more powerful test than will an ANOVA 

on change scores (Huck & Maclean, 1975). Covarying for the pretest helps remove chance 

variations between the groups, which also helps address issues due to regression to the mean and 

floor or ceiling effects (Campbell & Kenny, 1999). However, when subjects are not randomly 

assigned to groups (e.g., naturally occurring groups), covarying for the pretest is not appropriate 

because differences between the groups occur not only because of chance variation, but also 

because of systematic differences between the groups (e.g., Huitema, 1980; Lord, 1967; Rogosa, 

1995; Schafer, 1992). An ANOVA on difference scores does not involve regressing the posttest 

on the pretest (i.e., covarying for the pretest), and therefore it provides an unbiased estimate of 

the difference in change across groups when the groups differ at baseline (Wright, 2006). More 

simply put, when comparing the amount of change over two time points across groups, an 

ANCOVA (with the pretest as covariate) is recommended when subjects are randomly assigned 

to groups, and an ANOVA on difference scores is recommended when subjects are not randomly 

assigned to groups.  

 These recommendations apply directly to analyses related to RPPF designs. When 

comparing the amount of change from pretest to posttest, covarying for the pretest is 

recommended because subjects are randomly assigned to groups and therefore any differences 
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between the groups can be attributed to chance. However, covarying for the posttest when 

comparing the amount of change from posttest to follow-up would be inappropriate because 

differences between the groups at posttest are the result of not only chance variation, but also 

systematic differences between the groups (i.e., posttest scores hopefully differ because one 

group received an intervention while the other did not; Lord, 1967). In this case, comparing the 

group change scores would be most appropriate. These points will play an important role in the 

development of an improved model for analyzing RPPF designs presented later in the paper. 

Latent Change Models 

 SEM is a sophisticated statistical technique that allows researchers to assess the 

relationships among latent constructs estimated from observed measures (Bollen & Curran, 

2006). LCMs, which are a specific type of SEM, are used to assess hypotheses based on the 

amount of change across multiple time points. Over the past couple decades there has been a 

substantial amount of research on LCMs, including LCMS for identifying predictors of change, 

and identifying latent classes that differ in their growth trajectories (Bollen & Curran; Duncan, 

Duncan, Strycker, Li & Alpert, 2006; Matschinger, Kilian, & Angermeyer, 2006; Raykov, 1993; 

for a review of longitudinal models of change see Rosel and Plewis, 2008). More specifically, 

LCMs offer information not only on average change (e.g, how much did the experimental group 

change from pretest to posttest), but also the extent, magnitude and variability of individual 

changes. In this paper we use the term ‘latent change model’ or ‘LCM’ to represent a wide 

variety of structural equation models that assess change over time, such as latent growth curve 

models, latent curve analysis models, and latent difference score models. In some instances we 

refer to a specific type of change model and in those instances we use the more specific labels.  



Simplified Model for RPPF Designs     7 
 

LCMs use the repeated measures to estimate the amount of change across time. In a 

typical latent growth curve model, the slope and the intercept are the latent factors, where the 

intercept represents the reference point (typically the pretest) and the slope represents the rate of 

change over time. The rate of change is often expressed in units similar to a difference score, but 

this depends on the exact parameterization of the model (see Cribbie, Mills, & Jamieson, in 

press). Unlike SEM, which typically only incorporates information about the covariance 

structure of the observed measures, LCMs often incorporate information about the covariance 

structure as well as the mean structure of the observed measures. Recently, LCMs have become a 

popular technique because they offer unique advantages to addressing the complex research 

questions associated with longitudinal data (Curran, 2000). For example, LCMs permit the 

estimation of the measurement errors associated with the repeated measures. LCMs also have 

advantages over traditional methods in terms of how the relationships among the variables are 

modeled. For example, growth factors may be outcomes that are predicted from other variables 

(e.g., controlling for pretest or other covariates) or may be predictors of other latent or observed 

variables (e.g., change in alcohol use may predict academic achievement). Further, LCMs also 

make it very easy to have multiple indicators of growth at any time point, to analyze multiple 

growth processes in a single analysis (e.g., growth in alcohol use and growth in violence, and to 

model the relationships among the different growth processes), to include multiple groups with 

potentially different covariance matrices, etc. A typical conditional growth curve model is 

presented in Figure 1, where the intercept and slope are expected to be predicted by the two-level 

grouping variable.  

 Two recent papers present novel LCMs for comparing changes in groups over time in a 
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RPPF design. An important characteristic of these models is that they incorporate a latent 

difference score approach (McArdle & Hamagami, 2001), where change from pretest to posttest 

to follow-up is estimated using multiple difference score estimates of the amount of change 

across each of the time points (for an excellent summary of latent difference score models, and 

related models, see McArdle, 2009). This approach is different from a latent growth model, in 

which the measurement of change focuses on the average amount of change across all time 

points. The latent growth model approach is typically not appropriate for RPPF designs because 

researchers are interested in isolating the specific changes that occur across each of the time 

points (Mun, von Eye, & White, 2009). The first paper we highlight is from Willoughby, 

Vandergrift, Blair, and Granger (2007), who modify the typical LCM to accommodate RPPF 

designs. A conditional version of the Willoughby et al. model is presented in Figure 2, where the 

grouping variable is hypothesized to relate to the intercept and change variables. In their model, 

two change (slope) factors are used to represent the amount of change from pretest to posttest 

(Slope 1) and from pretest to follow-up (Slope 2). However, there are three limitations of the 

Willoughby et al. model for a RPPF design. First, there is no parameter to represent the posttest 

to follow-up change, and therefore no way to compare the groups on the amount of change from 

posttest to follow-up. Second, when estimating the amount of change from pretest to posttest, it 

is more appropriate (i.e., more powerful) to covary for the pretest score because participants are 

randomly assigned to groups. Third, the model is just-identified so no goodness of fit statistics 

are available. 

 A recent paper by Mun et al. (2009) addresses the first and third limitations of the 

Willoughby et al. model; specifically, they propose multiple over-identified models in which the 
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reference point changes in each model. Conditional versions of two of the models proposed by 

Mun et al. are presented in Figure 3. Specifically, the first model (Model a) enables an evaluation 

of group differences on the change from pretest to posttest (i.e., the ‘Group’ to ‘Slope 1' path), 

and posttest to follow-up (i.e., the ‘Group’ to ‘Slope 2’ path). The second model (Model b) 

enables an evaluation of group differences from pretest to follow-up (i.e., the ‘Group’ to ‘Slope 

1’ path) and from posttest to follow-up (i.e., the ‘Group’ to ‘Slope 2' path). Further, the 

regression of the intercept factor on the grouping variable is a test of group differences at posttest 

(Model a) or follow-up (Model b). However, the models proposed by Mun et al. have one 

important limitation with respect to analyzing change in RPPF designs; namely that they use a 

difference score based approach to controlling for the pretest. In other words, a more powerful 

test of whether the groups differ on the amount of change from pretest to posttest would be 

obtained if the model covaried for the pretest score since the participants are randomly assigned 

to groups. 

Proposed Latent Change Model 

 In order to address the limitations of the Willoughby et al. (2007) and Mun et al. (2009) 

models, we derived a model that covaries for the pretest to achieve greater power for detecting 

changes from pretest to posttest and posttest to follow-up. This model expands on the two time-

point ‘change-regression’ model (McArdle, 2009). It is important to recall that it is not 

appropriate to covary posttest scores when evaluating group differences in change from posttest 

to follow-up because posttest group differences (other than just chance variation) are expected 

due to the impact of the intervention. The proposed LCM is presented in Figure 4. In this model, 

the differences at pretest are covaried from both the posttest and follow-up variables, rendering 
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the interpretation of these variables as the amount of change from pretest to posttest (posttest 

variable) and from pretest to follow-up (follow-up). The change score based latent portion of the 

model is then used to estimate the amount of change from posttest to follow-up (‘Slope 2'). The 

regression of ‘Slope 1' on ‘Group’ can be interpreted as a test of group differences in change 

from pretest and posttest, and the regression of ‘Slope 2' on ‘Group’ can be interpreted as a test 

of group differences in change from posttest to follow-up.  

 Monte Carlo Study 

 A simulation study was used to evaluate the proposed model and compare the Type I 

error control and power of the proposed model to that of the Mun et al. models for evaluating 

group differences in change from pretest to posttest and posttest to follow-up. Two sample sizes 

were used, N = 100 and N = 500. Subjects (i = 1, ... , N) were randomly assigned to groups (g = 

1, 2). Pretest scores were a function of X (a true score on the outcome construct of interest; μ = 0, 

σ = 1) and error, εpre (μ = 0, σ = 1): 

 Pretesti = Xi + εpre, i .  

Two variables were then used to represent the amount of change from pretest to posttest (Cpp), 

and from posttest to follow-up (Cpf), each measured with error (μ = 0, σ = 1): 

 Cpp,i = Cpp,g + εpp,i 

 Cpf,i = Cpf,g + εpf, i. 

Note that Cpp,g and Cpf,g are constants that represent the amount of change from pretest to 

posttest, and posttest to follow-up, respectively, for the group that the ith participant was 

randomly assigned to. Posttest scores were then a function of X, Cpp, and error, εpost (μ = 0, σ = 

1): 
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 Posttesti = Xi + Cpp,i + εpost, i , 

and follow-up scores were a function of X, Cpp, Cpf, and error, εf (μ = 0, σ = 1): 

 Follow-upi = Xi + Cpp,i + Cpf,i + εf, i . 

 Two specific research questions were addressed for each of the Mun et al. and the 

proposed models: 1) Do the groups differ on the amount of change from pretest to posttest? and 

2) Do the groups differ on the amount of change from posttest to follow-up? For the Mun et al. 

procedure, Model a was used to evaluate these research questions. To evaluate whether the 

groups differed on the amount of change from pretest to posttest, the coefficient from regressing 

‘Slope 1' on ‘Group’ was evaluated, and to evaluate whether the groups differed on the amount 

of change from posttest to follow-up, the coefficient from regressing ‘Slope 2' on ‘Group’ was 

evaluated. In the proposed model, the coefficient from regressing ‘Slope 1' on ‘Group’ evaluated 

the question of whether the groups differed on the amount of change from pretest to posttest, and 

the coefficient from regressing ‘Slope 2' on ‘Group’ evaluated the question of whether the 

groups differed on the amount of change from posttest to follow-up. 

To evaluate Type I error rates for each model for the question of whether the groups 

differ on the amount of change from pretest to posttest, we set Cpp,1 = Cpp,2 = 0, and to evaluate 

power, we set Cpp,1 = 0 and Cpp,2 = .3. To evaluate Type I error rates for each model for the 

question of whether the groups differ on the amount of change from posttest to follow-up, we set 

Cpf,1 = Cpf,2 = 0, and to evaluate power, we set Cpf,1 = 0 and Cpf,2 = .3. Combinations of these 

conditions resulted in three different scenarios:  

Scenario 1: No difference between the groups in the amount of change from pretest to posttest or 

from posttest to follow-up (Cpp,1 = Cpp,2 = Cpf,1 = Cpf,2 = 0) 
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Scenario 2: A difference between the groups in the amount of change from pretest to posttest, but 

no difference between the groups in the amount of change from posttest to follow-up (Cpp,1 = 0; 

Cpp,2 = .3; Cpf,1 = Cpf,2 = 0) 

Scenario 3: A difference between the groups in the amount of change from pretest to posttest and 

from posttest to follow-up (Cpp,1 = 0; Cpp,2 = .3; Cpf,1 = 0; Cpf,2 = .3).  

 Five thousand simulations were conducted for each condition with a nominal alpha level 

of .05. The simulations were conducted in R (R Development Core Team, 2009), using the ‘sem’ 

package (Fox & Cramer, 2009) with maximum likelihood estimation. 

 

Results 

Type I Error Control and Power 

 Type I error control and power results for the Mun et al. LCM and the proposed LCM are 

presented in Table 1. 

 Scenario 1 (Cpp,1 = Cpp,2 = Cpf,1 = Cpf,2 = 0). For this situation, Type I error control is 

evaluated for both research questions because there is no change in either group across any of the 

time points. For the Mun et al. model, Type I error rates for evaluating whether the groups differ 

on the amount of change from pretest to posttest were slightly elevated (.061 for N = 100 and 

.058 for N = 500), while Type I error rates for evaluating whether the groups differ on the 

amount of change from posttest to follow-up were deflated (.026 for N = 100 and .025 for N = 

500). For the proposed model, Type I error rates for evaluating whether the groups differ on 

change from pretest to posttest, and from posttest to follow-up, for both sample sizes, were very 

accurate, ranging from .048 to .055. 
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 Scenario 2 (Cpp,1 = 0, Cpp,2 = .3; Cpf,1 = Cpf,2 = 0). Evaluating the difference between the 

groups in change from pretest to posttest is a power condition because the scores for group two 

change while the scores for group one do not change, while evaluating the difference between 

the groups in change from posttest to follow-up is a Type I error condition because there is no 

change for either groups across this time period. With respect to power for detecting the different 

amounts of change across the groups from pretest to posttest, the proposed model had greater 

power than the Mun et al. model, with a larger difference (about 5%) observed in the N = 500 

condition. With respect to Type I error control, as in Scenario 1, the Type I error rates for the 

Mun et al. model were slightly deflated, while the Type I error rates for the proposed model were 

accurate. 

 Scenario 3 (Cpp,1 = 0, Cpp,2 = .3; Cpf,1 = 0, Cpf,2 = .3). The amount of change from pretest 

to posttest, and the amount of change from posttest to follow-up, differ across groups and 

therefore both conditions are investigating power. Results for this scenario are also in Table 1. 

For both research questions there is greater power for the proposed model than for the Mun et al. 

model, with a greater difference observed with the larger sample size. For example, with N = 

500, there is approximately 76% power for detecting the difference in change between the two 

groups from pretest to posttest with the proposed model, and about 72% for the Mun et al. 

model, whereas there is approximately 68% power for detecting the difference in change 

between the two groups from posttest to follow-up with the proposed model, and about 57% for 

the Mun et al. model. 

Discussion 

 Researchers interested in evaluating the effectiveness of an intervention will often utilize 
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a RPPF design. Although there are numerous strategies for analyzing the data from RPPF 

designs, LCMs have become extremely popular and allow researchers the opportunity to model 

change across all three time points simultaneously while also including predictors or outcomes of 

change. This study discussed previously proposed models for comparing the amount of change 

across groups in RPPF designs and compared the Type I error control and power of a novel LCM 

for investigating group differences in change across pretest, posttest, and follow-up to models 

recently proposed by Mun et al. (2009). The proposed model uses a regression-based approach 

for controlling for group differences in change at pretest (i.e., covarying for the pretest), whereas 

the Mun et al. model uses a latent difference score based approach. The regression-based strategy 

is more appropriate than the change score approach when the subjects are randomly assigned to 

groups and therefore any differences between the groups can be considered error.  

 The results of the current study indicate that the proposed model provides more precise 

Type I error control and higher power than the models proposed by Mun et al. for evaluating 

group differences in change from pretest to posttest and posttest to follow-up. The proposed 

model can also easily be extended to designs with more than two treatment groups by utilizing a 

multiple group structural equation model, to designs with more than one change process (e.g., 

measuring change in both depression and anxiety), or to models with multiple predictors or 

outcomes of change. Recent research on Bayesian models may also present researchers with the 

opportunity to incorporate prior information into the modeling process and to allow researchers 

to fit these types of models with smaller samples than what would be required with a maximum 

likelihood solution (Zhang, Hamagami, Wang, Nesselroade, & Grimm, 2007). 

 To summarize, researchers utilizing RPPF designs are often interested in two specific 
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research questions, whether the treatment and control groups differ in change from pretest to 

posttest and whether the treatment and control groups differ in change from posttest to follow-

up. The proposed latent change model provides a very simple and effective strategy for 

evaluating these research questions.  
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Table 1. 
Type I error and Power Results for Investigating Group Differences in the Amount of Change 
from Pretest to Posttest and Posttest to Follow-up. 
 
 
 
 
   Pretest to Posttest   Posttest to Follow-up  
 
Scenario  Mun et al. Proposed  Mun et al.  Proposed  
 
      N = 100 
 
 
Cpp,1 = Cpp,2 = 0; .061  .051   .026  .055 
Cpf,1 = Cpf,2 = 0    
 
Cpp,1 = 0, Cpp,2 = .3; .206p  .226p   .023  .052 
Cpf,1 = Cpf,2 = 0   
 
Cpp,1 = 0, Cpp,2 = .3; .214p  .226p   .132p  .205p 
Cpf,1 = 0, Cpf,2 = .3    
     

N = 500  
 
Cpp,1 = Cpp,2 = 0; .058  .048   .025  .050 
Cpf,1 = Cpf,2 = 0    
 
Cpp,1 = 0, Cpp,2 = .3; .711p  .765p   .024  .051 
Cpf,1 = Cpf,2 = 0   
 
Cpp,1 = 0, Cpp,2 = .3; .719p  .763p   .568p  .684p 
Cpf,1 = 0, Cpf,2 = .3 
 
Note: Cpp,1 = amount of change from pretest to posttest for the first group; Cpp,2 = amount of 
change from pretest to posttest for the second group; Cpf,1 = amount of change from posttest to 
follow-up for the first group; Cpf,2 = amount of change from posttest to follow-up for the second 
group; p = power condition. 



Simplified Model for RPPF Designs     21 
 

 
 

Figure 1. Conditional latent change model with three time points and a dichotomous grouping 

variable. 
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Figure 2. Conditional latent change model due to Willoughby et al. (2007) for a RPPF design. 
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Figure 3. Conditional latent change models due to Mun et al. (2009) for a RPPF design. (a) 

Posttest as the referent variable; (b) Follow-up as the referent variable. 
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Figure 4. Proposed conditional latent change model for a RPPF design. 

 


