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ANCOVA and regression both exhibit a directional bias when measuring correlates of
change. This bias confounds the comparison of changes between naturally occurring
groups with large pretest differences (ANCOVA), or for identifying predictors of change
when the predictor is correlated with pretest (regression). This bias is described in some
detail. A computer simulation study is presented, which shows that properly identified
structural equation models are not susceptible to this bias. Neither gain scores (posttest
minus pretest) nor structural equation models exhibit the “regression bias.” Other fac-
tors, such as skewness, that may confound measurement of change are also discussed.

The issue of measuring change and predictors of change is fundamental to
many areas of research in education and psychology. Although much atten-
tion has been directed at the importance of measurements at multiple time pe-
riods and the value of growth curves (e.g., Lawrence & Hancock, 1998;
Rogosa & Willett, 1985; Willett, 1997), there has been renewed interest in the
two phase, pretest-posttest design (e.g., Maris, 1998; Williams &
Zimmerman, 1996). Although this simple design does not permit the detailed
analysis of individual growth patterns, it has many useful features and is
widely used. This design has two main advantages over a posttest-only de-
sign: (a) it permits error variance due to consistent individual differences to
be removed, thereby increasing power; and (b) it permits the groups to be
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equated for baseline differences thereby increasing the internal validity of the
design.

Two statistical methods are generally used to analyze data from this
design. One method uses “gain scores,” d = y – x, where y is the posttest score
and x is the pretest score. Gain scores are sometimes called change scores or
difference scores. The independent t test comparing mean gain scores for two
groups yields the identical conclusion as the interaction term in a 2 (groups)
by 2 (pretest/posttest) mixed-ANOVA and answers the question of whether
the two groups changed differently. The second method for analyzing this
design is ANCOVA, in which the pretest is used as the covariate and the
posttest is used as the dependent (criterion) variable. ANCOVA is the discrete
case of a partial correlation or R-squared change from multiple regression
and answers the question of whether group membership predicts posttest
scores after pretest differences between groups are “controlled for” or
“removed” (i.e., Did the groups change differently?).

These two methods each achieve the dual goals of controlling for pretest
(sometimes called baseline) differences and removing error variance. Gain
scores achieve these goals through subtraction: The consistent individual dif-
ferences are subtracted out, which leaves less error variance and removes
individual differences from between-group differences. ANCOVA achieves
these goals through use of regression lines. The regression line relating pre-
test and posttest scores within each group is used to calculate a residual score
for each participant that contains the amount of posttest not predictable from
pretest, which leaves less error variance. The regression lines are also used to
adjust the posttest mean to what the mean would have been expected to be if
the two groups had started at the same baseline. Because this latter correction
is a focus of attention later in this article, it will be described in a bit more
detail now.

ANCOVA involves an adjusted treatment mean, Y′j, that estimates what
performance in the jth group would have been if the group mean on the
covariate Xj had been equal to the grand mean for the covariate X. This is cal-
culated from

Y′j = Yj – bw (Xj – X), (1)

where bw is the pooled slope from the within-group regression and Yj is the
observed mean on the posttest, which will contain the treatment effect. To un-
derstand the nature of this adjustment, it is necessary to focus on what is pre-
dicted under the null hypothesis. For example, in a two-group problem, the
expected values of Y′1 and Y′2 are equal for Ho: µ1 = µ2. Hence,

Y1 – bw(X1 – X) = Y2 – bw (X2 – X). (2)
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This reduces to

Y1 – Y2 = bw (X1 – X2). (3)

Equation 3 can be used to illustrate how the expected differences in the
posttest (Yj) will change as a function of differences in the pretest (Xj) and the
slope (bw). An example of this effect is presented in Table 1.

From Table 1 it is clear that when bw is equal to 1, the expected difference
in the posttest means equals the difference in the pretest means. However,
when bw is less than 1, the posttest means are expected to come closer
together. For illustration, with a pretest difference of +20 and bw = .5, the
expected difference in the posttest means is +10. Thus, ANCOVA expects the
posttest means to come closer together than they were at pretest, to regress
toward zero difference. The expected difference in posttest means is greater
when either the pretest means are farther apart or the slope of the
within-group regression (bw) is lower. The value of bw will generally be less
than 1.0 because

bw = rxy (sy/sx) (4)

and rxy will be less than 1.0 due to measurement error. If the data are approxi-
mately normally distributed, the variability should be fairly constant from
pretest to posttest. Problems associated with skewed data are addressed in the
discussion.

It has been known for some time that the gain score and ANCOVA meth-
ods can produce different conclusions. The most dramatic demonstration of
this difference is known as Lord’s Paradox. Lord (1967) presented a hypo-
thetical example of a group of male and a group of female adolescents each
weighed on 2 consecutive years. Even though both groups gained the identi-
cal number of pounds (the posttest difference = pretest difference),
ANCOVA resulted in the conclusion that males increased significantly more
than did females, whereas a t test on gain scores yielded a t of zero. The reso-
lution of Lord’s paradox is quite simple. Assuming bw is less than 1.0, the
observed posttest difference will be greater than expected. The observed dif-
ference in posttest means did not regress as expected by ANCOVA under Ho,
so the difference in posttest means was interpreted by ANCOVA as being sig-
nificantly higher than expected. The group with the higher pretest mean
(males) was found by ANCOVA to gain significantly more weight than
females because they did not regress at posttest as expected.

It is clear that ANCOVA involves a quite different method for measuring
change than analysis of gain scores. With gain scores, the expected posttest
difference under Ho will be equal to the pretest difference in means. With
ANCOVA, the expected posttest difference will be closer to zero than the pre-
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test difference. Thus, ANCOVA expects the pretest mean difference to
decrease at posttest.

The important issue is when each of gain scores and ANCOVA is the cor-
rect model. When should each be used? The advice most often given is that
ANCOVA should only be used with randomized experiments and should be
avoided with naturally occurring groups (Huitema, 1980; Rogosa, 1988;
Schafer, 1992). The rationale for this advice is that when groups are assigned
at random, the group with the higher mean will have received more positive
random errors, whereas the group with the lower mean will have received
more negative random errors, both of which will tend toward zero on posttest.
So, regression toward the mean is expected when groups are randomly
assigned. On the other hand, if groups are naturally occurring, there is no rea-
son to expect the mean differences to dissipate. On the contrary, it is more rea-
sonable to assume the mean differences will be maintained on posttest (the
gain score assumption).

Although the advice to avoid ANCOVA with naturally occurring groups is
widely offered, this advice is conspicuously absent from two articles that
were published in influential journals (Maris, 1998; Wainer, 1991). These
articles based their recommendations on a causal model designed by Rubin
that was specifically applied to resolve Lord’s Paradox (Holland & Rubin,
1983). Rubin’s model focuses on untested control groups—basically, the
question of how the individuals would have changed had there been no treat-
ment. Rather than simply focusing on the question, Did the groups change
differently? Rubin’s model asks, Did the groups change differently, relative
to how they would have changed had they received the control condition?
Unfortunately, Rubin’s model appears to have distracted attention from the
main issue determining when ANCOVA should be used, namely the reason
for the baseline differences. Furthermore, there are many possible control
groups that might be considered because there really is no single “control
condition” implied by a question of differential response to a treatment.
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Table 1
Expected Difference in Posttest Means (Y1 – Y2)
From ANCOVA as a Function of Differences in Pretest Means and Slope

bw

X1 – X2 1.0 0.8 0.5

20 20 16 10
10 10 8 5
0 0 0 0

–10 –10 –8 –5
–20 –20 –16 –10



Moreover, Rubin’s model led Wainer (1991) to make an incorrect statement
that ANCOVA might be preferred to gain scores when there is an underlying
baseline drift (scores are increasing even without treatment). That statement
is quite incorrect because ANCOVA will still be the wrong method in this sit-
uation unless the groups are assigned at random, and gain scores are not
affected by the problem of baseline drift.

By failing to provide clear guidelines about when ANCOVA should be
used, these two articles (as well as others) have left this issue open, so
researchers have the option of choosing either ANCOVA or gain scores.
Jamieson (1999) recently pointed out that this option creates an ethical
dilemma for researchers because the two methods are too differentially pow-
erful to detect differences in changes. Simply by looking at the direction of
pretest differences and knowing which group is expected to change more, it is
possible to identify which of ANCOVA or gain scores will be more powerful
to detect this hypothesized difference (see Figure 4 in Jamieson, 1999, for an
illustration of the patterns of differences that each of ANCOVA or gain scores
are better able to detect). Jamieson (1999) pointed out that ANCOVA has a
directional bias that is a function of the direction of pretest differences and the
direction of differences in change: “ANCOVA is biased to find significance
in means which stay apart (parallel lines, as in Lord’s paradox) or which
diverge. Conversely it is biased against detecting significant effects when the
lines converge” (p. 159). Because the difference in power between gain
scores and ANCOVA is always in a predictable direction, it is essential to
have clear guidelines so that each method will be used only when it is the cor-
rect model, to avoid the ethical dilemma and associated Type 1 errors that
result from capitalizing on chance differences.

The directional bias also extends beyond the ANCOVA case to the contin-
uous case, where a continuous “third variable” replaces group membership.
Thus, instead of asking which group changed more, the question becomes
whether a third variable is correlated with amount of change. This question
arises in psychophysiology as identifying personality or lifestyle predictors
of physiological reactivity to stress, and in clinical or educational contexts as
identifying what types of individuals will benefit most from a program. What
variables predict who will change the most? Jamieson (1994) showed that the
“ANCOVA bias” also appears in the case of the continuous third variable. For
generality, the bias will now be referred to as the regression bias.

Using computer simulations, Jamieson (1994) compared the partial corre-
lation between a third variable and posttest, controlling for pretest, with the
correlation between the third variable and the gain score (d = y – x). The par-
tial correlation is the generalization of ANCOVA to a continuous variable,
whereas the correlation with the gain score is the generalization of the gain
score approach. Simulations were examined that manipulated two condi-
tions: (a) the correlation of the third variable with pretest and (b) the correla-
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tion of the third variable with the gain score. When the third variable was
uncorrelated with pretest, both gain score correlations and the partial correla-
tions yielded comparable values. However, when the third variable was cor-
related with pretest, the partial correlations and gain score correlations dif-
fered. The pattern of differences showed that partial correlations were biased
to detect statistically significant relationships with change, which were in the
same direction as the correlation with baseline, and were biased against
detecting statistical significance when the correlations were in opposite
direction. When the correlation between the third variable and change was
zero, large correlations with baseline resulted in many significant partial cor-
relations (Type 1 errors). Thus, the baseline correlation could result in the
finding of statistically significant correlation of the third variable with
change, even when the real correlation was zero. This finding is the general-
ization of Lord’s Paradox to a continuous variable.

Jamieson (1994) also showed when there was a very large correlation
between the third variable and pretest, the regression method sometimes
detected statistically significant correlations with change that were in the
opposite direction from the real correlation. In every case where there was a
large correlation of the third variable with baseline, regression was biased to
detect correlations with change in only one direction. These findings are
extensions of the ANCOVA bias: When the third variable is highly correlated
with pretest (which is comparable to large baseline differences in ANCOVA),
regression measures are biased to detect a correlation of change with the third
variable that is in the same direction as the correlation with baseline (which is
comparable to detecting mean differences that diverge from pretest to
posttest in ANCOVA). The ethical dilemma described in Jamieson (1999)
also applies to the case of a continuous variable. For example, suppose one
predicts that physically fit individuals will show lower heart rate increases to
stress than physically unfit. Pretest heart rate shows a large difference
because fit individuals have lower heart rates (heart rate is negatively corre-
lated with fitness level). If the study was done with two groups (fit, unfit),
then ANCOVA will be biased to find the group with the higher pretest heart
rate (unfit) to show a larger increase to stress. On the other hand, if, instead of
dichotomizing fitness, a fitness score was used as a predictor of heart rate
increase, the regression approach will be biased to detect a negative partial
correlation of fitness and posttest heart rate (unfit increasing more). In both
cases, the effect could simply be an artifact of the statistical method, not a real
finding.

The reason for the regression bias is well understood. Basically, the prob-
lem with regression is that the covariate (pretest) is assumed to be measured
without error (see, e.g., Darlington, 1990, p. 203). The greater the amount of
error variance in the pretest, the less effective regression will be in eliminat-
ing pretest variation from the measure of change. The findings of Jamieson
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(1994) show that one is in precisely the same situation when a third variable is
strongly correlated with pretest, as when there are large baseline differences
with naturally occurring groups. In both cases, the use of regression-based
methods can result in erroneous conclusions.

The present study was designed to determine whether the regression bias
also appears when a structural equation model is used to measure change.
Raykov (1992, 1993, 1994) and others have presented structural models that
measure change using two congeneric variables (both measures of the same
construct), each measured at pretest and posttest. The models include a latent
variable for the construct of “change” and allow examination of the relation-
ship between change and a third variable construct, also measured by two
congeneric variables. For example, heart rate and systolic blood pressure
might both be measured before and after exposure to a stressor. The latent
variable change is then a measure of increased cardiovascular activity. A
third variable construct, perhaps Type A behavior measured by both a ques-
tionnaire and a structured interview, could then be examined as a predictor of
the cardiovascular response to stress.

Because structural equation models (SEM) involve explicit modeling of
error variance for all observed and latent measures, it should not be suscepti-
ble to the regression bias. The purpose of the following study is to evaluate
whether this is in fact true. Simulations were created, similar to those of
Jamieson (1994) except that two measures are included instead of one. Dif-
ferent conditions are then created to manipulate the correlation of the third
variable with pretest, and the correlation of the third variable with change.
Three summary statistics are then examined to determine the effect of these
manipulations: (a) the correlation between the gain scores and the third vari-
able; (b) the partial correlation between the third variable and posttest, con-
trolling for pretest; and (c) the path from the structural model linking the
latent third variable to the latent change measure. The first two statistics are
included to replicate the regression bias demonstrated by Jamieson (1994).
The third statistic will show whether SEM are also affected by the regression
bias.

Method

Pseudorandom normal variates were generated by the SAS generator
RANNOR (SAS Institute, 1990a). The data generation was similar to meth-
ods used in Jamieson and Howk (1992) and Jamieson (1994). Three normally
distributed variables were generated with means of zero and standard devia-
tions of two to represent (a) a pretest (baseline) for two congeneric measures
(X), (b) a measure of amount of change (C) in the two measures from pretest
to posttest, and (c) a construct underlying a third variable or correlate of
change (Z). In addition, six normally distributed variables were generated
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with means of zero and standard deviations of one to account for measure-
ment error in the dependent variables.

Pretest measures of the repeatedly assessed variables were computed
from the construct (X) and error variables (e1, e2):

PRE1 = X + e1, PRE2 = X + e2.

Posttest measures were computed by adding a measure of change (C) to
the pretest construct (X) and individual error variables (e3, e4):

POST1 = X + C + e3, POST2 = X + C + e4.

The advantage of using computer simulated data is that specific relation-
ships can be built into the data and tested using various statistical methods. In
this study, the data were generated such that there was either a positive, nega-
tive, or null relationship between the two congeneric measures of the third
variable (Z1, Z2) and pretest, as well as a positive or negative relationship
between the two measures of the third variable and change. The positive and
negative relationships were identical in magnitude. Therefore, six conditions
were created by manipulating the relationships between the third variable
measures and baseline (0, +, –), and the third variable measures and change
(+, –). For example, to generate congeneric third variable measures that cor-
relate positively with baseline and negatively with change,

Z1 = Z + .75X – .75C + e5, Z2 = Z + .75X – .75C + e6. (5)

The variability of the latent pretest (X) and change (C) constructs were
reduced (i.e., premultiplied by .75) to generate empirically realistic correla-
tions between the third variable measures and the pretest/posttest measures.
In addition, to generate third variable measures that are not correlated with
pretest scores, the pretest construct (X) is removed from the equation. For
example, to generate third variable measures that are correlated positively
with change, but not correlated with baseline,

Z1 = Z + .75C + e5, Z2 = Z + .75C + e6. (6)

Gain Scores

Gain scores (G1, G2) for the two repeatedly assessed variables were com-
puted by taking the difference between pretest and posttest scores:

G1 = POST1 – PRE1, G2 = POST2 – PRE2.

Correlations were computed between each of the gain scores and each of
the congeneric measures of the third variable. A mean correlation was com-
puted by averaging the four correlations between the gain scores and third
variables.
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Regression-Based Method
(partial correlations)

Partial correlations were computed between posttest scores and the con-
generic measures of the third variable after controlling for the corresponding
pretest scores. An average partial correlation was computed by averaging the
four partial correlations between the posttest scores and the third variable
measures.

Structural Equation Modeling

The structural model used in this study (see Figure 1) was derived from
research by Raykov (1993, 1994, 1997); MacCallum, Kim, Malarkey, and
Kiecolt-Glaser (1997); Duncan et al. (1997); Steyer, Eid, and
Schwenkmezger (1997); and others for measuring change and identifying
correlates of change with SEM. The observed variables in this model are the
two pretest measures, the two posttest measures, and the two congeneric
measures of the third variable. Latent measures in this model represent the
baseline (X), the true change between pretest and posttest (C), and the third
variable construct (Z). The model definition equations for this model are

PRE1 = X + e1, PRE2 = X + e2,

POST1 = X + (a)C + e3, POST2 = X + (b)C + e4,

Z1 = (c)Z + e5, Z2 = Z + e6,

where a, b, and c are unknown path coefficients to be estimated from the data,
and e1 – e6 are the corresponding errors of measurement, also estimated from
the data, with the constraint that e1 = e3 and e2 = e4. The variances of the latent
baseline and third variable constructs were estimated from the data, and to
achieve identification of the model, the variance of the latent change variable
was set equal to one. The model contains 12 degrees of freedom, with 9 un-
knowns being estimated from 15 covariances and 6 variances.

To test the fit of the model to the data, the Goodness of Fit Index (GFI)
(Jöreskog & Sörbom, 1989), Adjusted Goodness of Fit Index (AGFI)
(Jöreskog & Sörbom, 1989), and Root Mean Square Error of Approximation
(RMSEA) (Browne & Cudeck, 1993) were recorded for each analysis. Cut-
off values of .95 were used to establish a good fit for the GFI and AGFI
(Shevlin & Miles, 1998), and .05 was used to establish a good fit for the
RMSEA (Browne & Cudeck, 1993; Hu & Bentler, 1999). Fan, Thompson,
and Wang (1999) found that, relative to other fit indices, the GFI, AGFI, and
RMSEA were sensitive to model misspecifications, the GFI and AGFI were
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insensitive to estimation method, and the RMSEA was insensitive to sample
size variation. Based on these results, Fan et al. (1999) recommended the use
of these fit indices in research. As always, it is important to examine multiple
fit indices to get a good overall “picture” of the fit of the model to the data.

Change score correlations, partial correlations, and structural model anal-
yses were computed over 1,000 simulations of 200 cases each, for the six
conditions. All analyses were performed using SAS (SAS Institute, 1990a).
The structural models were tested against the data using SAS PROC CALIS
(SAS Institute, 1990b) and maximum likelihood estimation.

Results

Gain Scores

The mean correlations between the gain scores and the third variables for
the six conditions can be found in Table 2. The results were equivalent to
those of Jamieson (1994), with the correlations between the gain scores and
the third variables consistent across each of the conditions. In other words,
the correlations between the gain scores and the third variable scores were
unaffected by the relationship of the third variable with pretest. As expected,
the correlations between the gain scores and the third variable were larger
when there was no correlation between the pretest scores and the third vari-
ables as a result of the increased proportion of variability accounted for by the
correlation between change and the third variables (see Equations 5 and 6).

Regression (partial correlation)

The mean partial correlations between the posttest scores and each of the
third variables after controlling for pretest scores can be found in Table 3. The
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Figure 1. The structural model used to identify correlates of change.
Note. All parameters not fixed at a set value (1) are estimated from the data, with the only constraint that E1 =
E3 and E2 = E4.



results were again consistent with those found by Jamieson (1994). When
there was no relationship between pretest scores and third variable scores, the
average partial correlations were quite similar to the gain score correlations,
although when a relationship existed between baseline scores and third vari-
able scores, the partial correlations were biased. Specifically, when the rela-
tionship between the baseline scores and the third variable scores was con-
gruent with the relationship between change and the third variable scores
(i.e., both relationships positive or both relationships negative), the partial
correlations were inflated. In contrast, when the relationship between the
baseline scores and the third variable scores was incongruent with the rela-
tionship between change and the third variable scores (i.e., one relationship
positive and one relationship negative), the partial correlations were deflated.
Thus, partial correlations of a third variable with change are very much
affected by the correlation of the third variable with baseline.

Structural Modeling

To verify that the proposed structural model provided a good fit to the sim-
ulated data, the mean GFI, AGFI, and RMSEA were computed for each con-
dition. The mean GFI, AGFI, and RMSEA were similar across conditions
and indicate a good overall and parsimonious fit of the model (.983 to .984,
.965 to .966, and .018 to .019, respectively).
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Table 2
Mean Correlations Between the Gain Scores and the Third Variables

Baseline and Third Variable Relationship

Change and Third Variable Relationship Negative Zero Positive

Negative –.397 –.455 –.399
Positive .398 .453 .396

Table 3
Mean Partial Correlations Between Posttest Scores and
Third Variable Scores After Controlling for Pretest Scores

Baseline and Third Variable Relationship

Change and Third Variable Relationship Negative Zero Positive

Negative –.539 –.460 –.360
Positive .360 .463 .538



The mean correlations between the latent third variable and the latent
change variable for the six conditions can be found in Table 4. The results for
the proposed model were similar to the results found for the change score cor-
relations; namely, the relationship between the third variables and change
was unaffected by the relationship between the third variables and baseline.
Again, as expected, the correlations between the change scores and the third
variable were larger when there was no correlation between the pretest scores
and the third variables as a result of the increased proportion of variability
accounted for by the correlation between change and the third variables (see
Equations 5 and 6).

Discussion

These simulations replicate the regression bias demonstrated by Jamieson
(1994) and show that SEM are not affected by this bias. Although the correla-
tion of a third variable with pretest confounded regression measures of
change, SEM and gain scores were unaffected. This finding, although not
surprising, is nevertheless reassuring and confirms that SEM are an unbiased
method for identifying correlates of change. SEM are becoming more widely
used and have great potential for testing unambiguous, predetermined, and
theoretically important models. However, in situations where SEM are not
appropriate, either because of small sample size or because two congeneric
measures are not available, gain scores remain a good alternative for analyz-
ing change because they are not affected by correlations of a third variable
with pretest.

However, gain scores are not perfect. Although earlier concerns about
poor reliability of gain scores are no longer seen as a serious problem (Llabre,
Spitzer, Saab, Ironson, & Schneiderman, 1991; Williams & Zimmerman,
1996), the question remains of whether gain scores might also be biased mea-
sures of change under some circumstances. Wainer (1991) referred to “the
very difficult problems associated with restriction of range” (p. 150). Spe-
cifically, when data are skewed, perhaps because of floor or ceiling effects,
are gain scores unbiased measures of change? The answer is no! Jamieson
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Table 4
Mean Correlations Between the Latent Change and the Latent Third Variable

Baseline and Third Variable Relationship

Change and Third Variable Relationship Negative Zero Positive

Negative –.513 –.597 –.512
Positive .514 .597 .512



(1995) used computer simulations to compare gain scores and ANCOVA
when variance decreased from pretest to posttest. The decrease in variance
was created through simulating a floor/ceiling effect, through skewness, and
through just manipulating variance. In all three cases, gain scores lost power
relative to ANCOVA when the variance decreased from pretest to posttest.

Jamieson (1999) described a principle that gain scores are confounded
with pretest whenever data are skewed. As an illustration, he offers the fol-
lowing example:

Another way to illustrate this principle is to consider a measurement model in
which the true dimension is normally distributed, but the observed measure is
positively skewed. Suppose a square root transformation will change the ob-
served measure to a normal distribution, eliminating the skewness and thereby
reflecting the true underlying process. Consider a numerical illustration, in
which observed scores of 25 and 100 correspond to true scores of 5 and 10 (the
square roots). If a task produced an increase of 1 in each true score, from 5 to 6
and from 10 to 11, this would correspond to changes in the observed scores
from 25 to 36 and from 100 to 121. The changes for the observed scores are 36 –
25 = 9 and 121 – 100 = 21. Thus the observed scores show a difference (21 – 9 =
15) in the amount of change, even though the true scores both have the identical
increase of 1 unit. The positive skewness caused the higher score to change
more. (pp. 156-157)

Thus, there is a real concern about the confound of comparing changes in
groups that start from different baselines when the data are skewed. At pres-
ent, the best solution appears to be to examine the shape of the distribution
and apply an appropriate transformation, if possible. Williams and
Zimmerman (1996) recently dealt in some depth with the issue of changing
shape of distributions. They pointed out that in many educational contexts,
data may start from a floor (positively skewed distribution) and increase in
variance in response to a treatment to show a more symmetrical distribution.
If the data are only skewed at pretest, a transformation applied to both pretest
and posttest would not be appropriate. It is not clear how to obtain an unbi-
ased measure of change in such circumstances. Although there are still unan-
swered questions about how to measure change in the 2-phase design, the two
guidelines suggested by Jamieson (1999) are a good starting point: Avoid
ANCOVA except for randomized experiments, and avoid using gain scores
with skewed data.

The potential of SEM for measuring correlates of change is an important
topic for further research. The present study showed that SEM are not
affected by the regression bias and are able to accurately estimate the rela-
tionship between a third variable and change, independent of whether the
third variable is also correlated with pretest. One question of particular
importance is whether SEM will show the same confounds with skewed data
that are evident with gain scores. Previous research has reported that maxi-
mum likelihood estimation in SEM is relatively robust to moderate violations
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of normality (Ip & Willson, 1998) and that asymptotically distribution-free
test statistics may provide accurate parameter estimates and standard errors
for nonnormal data. Therefore, it is possible that SEM, unlike gain scores,
may provide accurate estimates (and statistical tests) of the relationship
between change and correlates of change when the variables are skewed. We
are currently exploring this question.
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