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Abstract 

The purpose of this study was to evaluate a modified test of equivalence for conducting 

normative comparisons when distribution shapes are nonnormal and variances are unequal. A 

Monte Carlo study was used to compare the empirical Type I error rates and power of the 

proposed Schuirmann-Yuen test of equivalence, which utilizes trimmed means, with that of the 

previously recommended Schuirmann and Schuirmann-Welch tests of equivalence when the 

assumptions of normality and variance homogeneity are satisfied, as well as when they are not 

satisfied. The empirical Type I error rates of the Schuirmann-Yuen were much closer to the 

nominal α level than those of the Schuirmann or Schuirmann-Welch tests, and the power of the 

Schuirmann-Yuen was substantially greater than that of the Schuirmann or Schuirmann-Welch 

tests when distributions were skewed or outliers were present. The Schuirmann-Yuen test is 

recommended for assessing clinical significance with normative comparisons. 

 

  



ROBUST NORMATIVE COMPARISON TESTS                                                                       3 
 

Evaluating Clinical Significance: Incorporating Robust Statistics 

with Normative Comparison Tests 

In the field of clinical psychology, much research is dedicated to evaluating the 

effectiveness of various interventions. An important aspect of the effectiveness of an intervention 

is clinical significance, which can be operationally defined as the practical or applied importance 

of the intervention. This importance is normally described in terms of whether the intervention 

makes a real difference in the everyday life of the client or individuals who interact with the 

client, or whether the intervention is able to bring the client back to a state of normal functioning. 

Following numerous recommendations for the reporting of clinical significance (e.g., Kendall, 

1997), clinical researchers are beginning to make measures of clinical significance an important 

part of their clinical intervention studies (e.g., Sanchez-Ortuno & Edinger, 2010; Wallach, 2009).  

There have been numerous methods put forth to evaluate the effectiveness of an 

intervention, however there are a few issues with these methods. For example, one issue is that 

most methods do not analyze whether the treated group returns to a state of normal functioning. 

In other words, traditional methods of evaluating interventions may assess whether the treated 

group has experienced significant change, but may fail to specify how much the group has 

changed, what this change means, or whether the change has returned the clients in the group to 

a level of normal functioning. A second issue is that many methods assess clinical significance at 

the individual rather than the group level, which can make global assessments of intervention 

efficacy difficult. For example, what proportion of improved clients would indicate that the 

intervention was effective? Although individual level assessments are important for the 

clinicians to examine in order to be able to identify clients with extreme responses to the 

treatment, researchers reviewing intervention studies are often interested in global assessments of 
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the efficacy of the intervention. Another important issue is that most methods ignore the fact that 

the distribution of scores in treated, control, and normal comparison group are often nonnormal, 

and that the variances are often very different across these groups.  

One of the more promising recent methods for assessing clinical significance involves 

evaluating the equivalence of a treated group of clients and a normal comparison group on an 

outcome (e.g., symptoms of depression) of interest (Kendall, Marrs-Garcia, Nath & Sheldrick, 

1999). The advantages of this approach are that the assessments are at the group level, and that 

the method directly addresses the question of whether the clients in the group have returned to a 

state of normal functioning. The purpose of this research was to investigate improvements to 

existing test statistics for evaluating the equivalence of a group of treated clients and a normal 

comparison group for situations in which the distributions of the groups are nonnormal and/or 

the variances of the groups are unequal. 

 

Introduction to Traditional Methods for Determining the Effectiveness of an Intervention 

Traditionally, statistical analyses of intervention studies involved only comparisons of 

pre- and post-treatment data to determine whether the treatment was responsible for the change 

observed. These comparisons were typically made relative to a control group. Traditional 

statistical significance tests, for example Student’s two related-samples t test or an ANOVA F 

test are used to compare the pre- and post-treatment data of the experimental group or the 

experimental and control groups. Using traditional statistical significance tests to evaluate 

treatment efficacy is limited in that it does not provide information about the strength of the 

relationship or whether it has clinical meaning or significance (e.g., did the clients return to a 

state of normal functioning) (Jacobson & Truax, 1991; Kraemer et al., 2003).  
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Effect size measures (e.g., Cohen’s d) can be used to assist in interpreting practical 

significance, as they provide a measure of the strength of the relationship. However, Kraemer et 

al. (2003) discuss an important limitation of effect sizes that relates to their ability to act as a 

measure of clinical significance. The issue is that effect sizes are not interpretable in terms of 

how much individuals are affected by the treatment because they were not originally designed to 

be indexes of clinical significance. However, more recent indices of effect size for clinical 

interventions, for example the success rate difference (SRD), provide more appropriate indices of 

an effect for randomized studies. The SRD represents the difference between the probability that 

a client in the treatment group has a treatment outcome preferable to a client in the control group 

and the probability that a client in the control group has a treatment outcome preferable to a 

client in the treatment group (Kraemer & Kupfer, 2011).  

More specifically, although effect sizes assess the strength of the association (e.g., how 

much more did the experimental group improve than the control group), they do not tell us if the 

clients have been brought back to a state of normal functioning.  

Popular methods of assessing clinical significance, such as Jacobson & Truax’s (1991) 

method, measure change at the individual level by determining whether the treated clients move 

outside the range of the dysfunctional population or within the range of the functional 

population. The first step with the Jacobson and Truax approach is to calculate a cutoff point for 

clinically significant change, which represents the point that the client must cross at the time of 

the post-treatment assessment in order to be classified as changed to a clinically significant 

degree. Jacobson and Truax proposed three ways to calculate the cutoff score: 1) the level of 

functioning following an intervention should fall outside the range of the dysfunctional 

population, where the range is defined as extending to two standard deviations beyond the mean 
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of the dysfunctional population; 2) the level of functioning following an intervention should fall 

within the range of the functional population, where the range is defined as within two standard 

deviations of the mean of that population; or 3) the level of functioning following an intervention 

places that client closer to the mean of the functional population than it does to the mean of the 

dysfunctional population. The second step is to calculate a reliable change index (RCI) to 

determine whether a client’s change from pretest to posttest is reliable and not due to 

measurement error since it is possible for post-test scores to cross the cutoff point yet not be 

statistically reliable.  

𝑅𝐶𝐼 =  
𝑥2 − 𝑥1

√2 𝑆𝑑𝑖𝑓𝑓

 

Here x1 represents a client’s pretest score, x2 represents that same client’s posttest score, 

and Sdiff is the standard error of difference between the two test scores. Sdiff  is traditionally 

calculated as spre(1 – rpre)
.5, where spre is the standard deviation of the pretest score and rpre is the 

internal consistency or test-retest reliability of the pretest score (see Martinovich, Saunders & 

Howard, 1996, for the advantages and disadvantages of each).  

There are a couple of important criticisms related to using Jacobson and Truax’s method. 

First, it is unclear how robust the method is when the violation of the assumption that the 

dysfunctional and functional distributions are normal, since the method assumes normal 

distributions. This is especially important since several previous reviews have found that 

distributions in Psychology are rarely normal (e.g., Micceri, 1989). Secondly, this method is 

designed to study clients at the individual level (i.e., each individual is investigated separately), 

making it difficult to make general statements about the effectiveness of an intervention. In many 

cases researchers will compute the proportion of individual’s that recovered, improved, were 

unchanged or deteriorated, and others may even compare the proportions in each category; 
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however, these tests do not directly answer the question of whether the previously clinical group 

is now performing equivalent to a normal comparison group.    

 

Introduction to Normative Comparisons 

Normative comparisons are a procedure for evaluating the clinical significance of 

therapeutic interventions. For example, imagine that an intervention has been shown to produce 

significantly greater improvement than a placebo, another treatment, etc., but that it is unclear 

how well the treated clients are functioning relative to a normal comparison group. Normative 

comparisons involve comparing the mean of a treated group (i.e., the clinical group following the 

intervention) with that of a normal comparison group in order to address the clinical significance 

of the research. Specifically, the goal of the research is to determine if the two groups score 

equivalently on the measure or behavior of interest. Kendall et al. (1999) raise two important 

questions related to the clinical significance of an intervention. First, is the amount of change 

that has occurred because of the treatment large enough to be considered meaningful? And 

second, are the treated individuals distinguishable from normal individuals? Normative 

comparison tests address these questions at the group level. This method allows one to assess the 

effectiveness of an intervention against a standard independent of the initially disordered 

individuals. However, since the statistical analyses involve demonstrating the equivalence of, 

rather than the difference between, the treated and normal comparison groups, specialized 

equivalence testing methods are required.  

However, there are a couple of important cautions to raise regarding normative 

comparisons before discussing the methods in detail. First, the methods described in this paper 

are intended for interventions in which a realistic goal is to return the clients to a state of 
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functioning that falls within the normal range. Although this is not the case for all interventions 

(e.g., treating behavioral issues in autistic populations), we believe that it is the case for many 

interventions. As discussed by an anonymous reviewer of this paper, the use of psychiatric 

medications (e.g., antidepressants) could also be an aspect of the intervention that helps to return 

the individuals’ behavior to a state of normal functioning; normative comparisons would still be 

useful in this setting unless the treated group was only taking the medication on a short term 

basis. A second caution, also raised by an anonymous reviewer, is that because normative 

comparisons only utilize a measure of behavior at a single time point, they cannot take into 

account the possibility of relapses in the future. Finally, it must also be emphasized that the 

comparison population (typically referred to as the normal comparison group) must be selected 

to match as closely as possible the relevant characteristics of the treated group. For example, 

imagine that a community sample of individuals diagnosed with major depressive disorder was 

treated with cognitive behavioral therapy. If the researcher wanted to conduct normative 

comparisons it would not be appropriate to compare the treated community sample to, for 

example, a normative population comprised of university students because the latter is well 

known to have higher than normal rates of depression (and thus the treated sample may seem 

equivalent to the university sample on depression, even though they would not be equivalent to a 

community sample on depression). Without a comparable normative group the comparisons 

made can be very misleading.    

 

Introduction to Equivalence Testing 

 Equivalence testing is a statistical method often used in biopharmaceutical studies to 

determine the equivalence of two experimental drugs. Rogers, Howard & Vessey (1993) explain 
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that equivalence testing methods can be used to evaluate many important hypotheses in 

psychology and related fields. Recent literature (e.g., Cribbie & Arpin-Cribbie, 2009; Gruman, 

Cribbie, & Arpin-Cribbie, 2007; Rogers et al., 1993; Seaman & Serlin, 1998) has highlighted 

that traditional difference-based tests are not appropriate when the goal is to determine if two 

groups are equivalent on an outcome variable, and encourage the use of equivalence tests for 

evaluating these types of hypotheses. When an investigator is trying to demonstrate the 

equivalence of groups with a traditional test of significance, the investigator is often in the 

position of trying to confirm rather than reject the null hypothesis. It is widely known that with a 

large enough sample size that even minute differences will be statistically significant (Rogers et 

al., 1993). Further, when the sample sizes are small, the means will almost always be declared 

equivalent (i.e., the null hypothesis of no difference will rarely be rejected).   

The null hypothesis of equivalence tests states that the difference between the groups is at 

least as large as the equivalence interval specified by the investigator, and the alternative 

hypothesis states that the difference between the groups is smaller than the specified interval 

(Rogers et al., 1993). Schuirmann (1987) proposed an equivalence testing method in which the 

investigator must first define an equivalence interval and then perform two simultaneous one-

sided hypothesis tests. When defining the equivalence interval, one must consider what the 

smallest meaningful difference would be given the nature of the research. If the difference falls 

within the specified interval (-δ, δ), one can conclude that the two groups are equivalent. The 

range must be bounded by two values: the lower value is the negative delta (-δ), and the upper 

value is the positive delta (δ). Choosing a large δ will increase the probability of declaring the 

groups equivalent, but at the same time it reduces the likelihood that the differences between the 

groups can be considered meaningless. A smaller δ makes it harder to establish the equivalence 
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of the two groups, but at the same time there is more confidence regarding statements of 

equivalence (Cribbie & Arpin-Cribbie, 2009). Let µ1 and µ2 represent the two population means 

being compared and let δ represent the smallest difference between the means that would be 

considered important. The statistical hypotheses are defined as: 

 

H01: µ1 – µ2 ≥ δ ; H02: µ1 – µ2 ≤ -δ 

Ha1: µ1 – µ2 < δ ; Ha2: µ1 – µ2 > -δ 

 

In order to establish the equivalence of the means, two simultaneous one-sided tests are 

used to test H01 and H02. In test one, the goal is to reject the null hypothesis asserting that the 

difference between the means is greater than or equal δ. In test two, the goal is to reject the null 

hypothesis asserting that the difference is less than or equal to -δ. H01: µ1 – µ2 ≥ δ is rejected if t1 

≤ - tα,df where: 

𝑡1 =
(𝑀1 − 𝑀2) − 𝛿

√
(𝑛1 + 𝑛2)[(𝑛1 − 1)𝑠1

2 + (𝑛2 − 1)𝑠2
2]

𝑛1𝑛2(𝑛1 + 𝑛2 − 2)

 

and H02: µ1 – µ2 ≤ -δ is rejected if t2 ≥ tα,df where: 

𝑡2 =
(𝑀1 − 𝑀2) − (−𝛿)

√
(𝑛1 + 𝑛2)[(𝑛1 − 1)𝑠1

2 + (𝑛2 − 1)𝑠2
2]

𝑛1𝑛2(𝑛1 + 𝑛2 − 2)

 

M1 and M2 are the group means, n1 and n2 are the group sample sizes, s1 and s2 are the group 

standard deviations, and tα,df is the upper tailed α-level t critical value with n1+n2 – 2 degrees of 

freedom. It is important to point out that an alternative method for conducting these analyses is 
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to determine if the 1-2α confidence interval is completely contained within the equivalence 

interval. In other words, reject H01 and H02 if: 

𝑀1 − 𝑀2 ± 𝑡2𝛼,𝑑𝑓√
(𝑛1 + 𝑛2)[(𝑛1 − 1)𝑠1

2 + (𝑛2 − 1)𝑠2
2]

𝑛1𝑛2(𝑛1 + 𝑛2 − 2)
 

 is completely contained within (-δ, δ). 

For the purpose of this paper, the focus of equivalency tests is on whether an intervention 

is effective by comparing the post-test scores of a treated group to a normal comparison group. 

The use of equivalence tests to compare treated and normative populations is entitled ‘normative 

comparisons’ and these comparisons are described in the next section.   

 

Kendall’s Normative Comparison Procedure  

The first step in the Kendall et al. (1999) normative comparisons approach is to specify a 

range of closeness within which two groups will be considered clinically equivalent (i.e., the 

equivalence interval). Kendall et al. (1999) make mention that although one standard deviation 

may be a guideline for published norms, the defined range can be tailored differently depending 

on the particular comparison. For example, the selection of δ can be guided by cutoff scores from 

published measures, percentages of the normal or treated group mean, or effect size estimates of 

differences that are not clinically significant (Kendall et al., 1999). Cribbie and Arpin-Cribbie 

(2009) discuss how, in instances where a researcher does not have a clearly defined equivalence 

interval, that a single δ value does not allow the researcher to quantify the level of closeness 

established by the therapy. Cribbie and Arpin-Cribbie (2009) suggest, in cases where researchers 

evaluating the equivalence of treated and normative groups have little information on which to 

select an appropriate single interval, that multiple equivalence intervals be utilized. The 
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following levels of δ are provided as suggestions; (a) δ = .5 (snormal); (b) δ = snormal; and (c) δ = 

1.5 (snormal), where snormal is the standard deviation of the normal comparison group. Again, the δ 

levels should be selected based on the nature of the specific study, since the difficulty associated 

with returning behavior to normal functioning varies greatly from behavior to behavior and study 

to study (Cribbie & Arpin-Cribbie, 2009). Cribbie and Arpin-Cribbie also discuss the importance 

of conducting a preliminary test that assesses whether the clinical group at pretest is different 

from the normal comparison group (using a traditional difference based test), since, if the groups 

do not differ before the intervention the value of demonstrating that they are equivalent 

following the intervention is reduced substantially.  

The next step is to conduct the equivalence test to determine if the treated and normal 

comparison groups can be considered equivalent. In equivalence testing two popular approaches 

are the original Schuirmann two one-sided test (TOST) procedure (Schuirmann, 1987, presented 

above) and the Schuirmann-Welch test (Dannenberg, Dette & Munk, 1994; Gruman et al.,  

2007). The original Schuirmann procedure assumes that the treated and normal comparison 

population variances are equal, whereas the Schuirmann-Welch does not require that the 

population variances be equal. Although Kendall et al. (1999), and others (e.g., Golinski & 

Cribbie, 2009; Keselman et al., 1998) have indicated that population variances are rarely equal in 

psychological studies, Kendall et al. present the homoscedastic TOST proposed by Schuirmann 

(1987) as the method for conducting normative comparisons.  

Dannenberg et al. (1994) proposed a modification to the original Schuirmann test of 

equivalence that incorporated the heteroscedastic standard error and degrees of freedom due to 

Welch (1938) and Satterthwaite (1946). This modification was done because the original 

Schuirmann test of equivalence utilizes the same standard error and degrees of freedom as the 
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independent-samples t test, and thus the sample size and variance inequality issues that affect the 

independent-samples t test also affect Schuirmann’s equivalence test (Cribbie & Arpin-Cribbie, 

2009). Empirical Type I error rates for Schuirmann’s test of equivalence have been found to 

deviate substantially from the nominal α level when sample sizes and variances are unequal 

(Gruman et al., 2007). For the Schuirmann-Welch test of equivalence, H01: µ1 – µ2 ≥ δ is rejected 

if tw1 ≤ -tα,dfw and H02: µ1 – µ2 ≤ -δ is rejected if tw2 ≥ tα,dfw where:  

𝑡𝑤1 =
(𝑀1 − 𝑀2) − 𝛿

√
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2

 

 

𝑡𝑤2 =
(𝑀1 − 𝑀2) − (−𝛿)

√
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2

 

and 

𝑑𝑓𝑤 =
(
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2
)2

𝑠1
4

𝑛1
2(𝑛1 − 1)

+
𝑠2

4

𝑛2
2(𝑛2 − 1)

 

 

Example of Normative Comparisons 

Manzoni, Cribbie, Villa, Arpin-Cribbie, Gondoni and Castelnuovo (2010) used an 

observational pre-post study to examine the effectiveness of a four week cardiac rehabilitation 

program for improving obese patients’ psychological well being. The patients completed the 

Psychological General Well-Being Inventory (PGWBI) at admission and at discharge. The 

researchers used the normative comparisons procedure to determine the clinical significance of 

the four week residential program. Manzoni et al. hypothesized that obese patients with heart 
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disease would have lower scores than normal on a measure of quality of life at baseline and that 

a cardiac rehabilitation intervention would be effective for improving mental health to normal 

levels. Equivalence testing with normative comparisons was used to evaluate whether the four 

week rehabilitation program was effective at improving impaired PGWBI dimensions to normal 

levels. Results showed that patients’ mean scores on the PGWBI scales that were impaired at 

baseline in comparison to norms (Global score, Self-control and Vitality) were equivalent to 

normal means at discharge. Even at the subgroup level, the PGWBI scales that were impaired at 

baseline significantly improved to normal levels at the end of the intervention.  

 

Improving Normative Comparisons 

An important issue when evaluating the equivalence of treated and normal comparison 

groups is that the distributions of the groups are often not normal and/or contain outlying cases. 

For example, with treated clinical populations often a large proportion of the group improves but 

a small subset of the group either does not improve or even deteriorates. This can result in a 

negatively skewed distribution with outlying cases. Further, normal comparison group scores on 

popular psychological scales measuring depression, anxiety, etc. often produce highly positively 

skewed distributions with many outlying cases in the upper tail. These are only a couple 

examples of distributions that are often skewed in clinical research. 

Even though the Schuirmann-Welch test is robust to violations of the variance 

homogeneity assumption, it is unclear how robust this test will be when the distributions are 

skewed or contain outliers. For example, both Student’s t (which assumes equal variances) and 

Welch’s t (which does not assume equal variances) have poor control over Type I error rates 

when distributions are nonnormal and variances are unequal (Keselman, Othman, Wilcox & 
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Fradette, 2004). A popular approach for dealing with nonnormal distributions and/or outliers has 

been to remove the atypical values by trimming the data. Wilcox (1997), Keselman et al. (2004), 

and others, indicate that rates of Type I error and power to detect effects are much less affected 

when trimmed means are substituted for the usual group means. Past studies have recommended 

setting the amount of trimming at 20% (e.g., Keselman, Wilcox, Lix, Algina, & Fradette, 2007; 

Wilcox & Keselman, 2001; Wilcox, 1997), where 20% trimmed means implies that the analyses 

are computed after removing the most extreme 20% of the cases from each tail (see details 

below). Yuen (1974) proposed a trimmed two-sample t test, based on the standard error and 

degrees of freedom of the Welch (1938) test, that was found to be more powerful and had more 

accurate empirical Type I error rates than the original Student’s t when the distributions were 

nonnormal. 

In order to improve the normative comparisons approach for situations in which the 

distributions are nonnormal or contain outlying cases, the Schuirmann-Welch test of equivalence 

was modified by replacing the original means and variances with the trimmed means and 

Winsorized variances (entitled the Schuirmann-Yuen procedure). Ho1 is rejected if ty1 ≤ -tα,dfy and 

Ho2 is rejected if ty2 ≥ tα,dfy where: 

𝑡𝑦1 =
𝑀𝑡1 − 𝑀𝑡2 − 𝛿

√𝑑1 + 𝑑2

 

𝑡𝑦2 =
𝑀𝑡1 − 𝑀𝑡2 − (−𝛿)

√𝑑1 + 𝑑2

 

    and 

df𝑦 =  
(𝑑1 + 𝑑2)2

𝑑1
2

(ℎ1 − 1)
+

𝑑2
2

(ℎ2 − 1)

. 
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h1 and h2 represent the sample sizes after trimming and Mt1 and Mt2 are the population trimmed 

means. In order to obtain the trimmed means, let 𝑌(1)𝑗 ≤ 𝑌(2)𝑗  ≤ …≤ 𝑌(𝑛𝑗)𝑗 and let gj=[γnj] 

indicate that γnj is rounded down to the nearest integer and γ represents the proportion of 

observations that are to be trimmed in each tail of the distribution. The effective sample size for 

the jth group becomes hj = nj – 2gj. Therefore the sample trimmed mean is: 

𝑀𝑡𝑗 =
1

ℎ𝑗
∑ 𝑌

𝑛𝑗−𝑔𝑗

𝑖=𝑔𝑗+1

. 

Further, d is defined as: 

𝑑𝑗 =
(𝑛𝑗 − 1)�̂�2

𝑤𝑗

ℎ𝑗(ℎ𝑗 − 1)
, 

where �̂�2
𝑤𝑗 is the gamma-Winsorized variance. The sample Winsorized variance, which is 

required to get a theoretically valid estimate of the standard error of trimmed means, is then 

given by 

�̂�2
𝑤𝑗 =

1

𝑛𝑗 − 1
∑(𝑋𝑖𝑗 − �̂�𝑤𝑗)

2

𝑛𝑗

𝑖=1

. 

The sample Winsorized mean, necessary to compute the Winsorized variance, is computed as:  

�̂�𝑤𝑗 =
1

𝑛𝑗
∑ 𝑋𝑖𝑗

𝑛𝑗

𝑖=1

 

where: 

𝑋𝑖𝑗 = 𝑌(𝑔𝑗+1)𝑗 𝑖𝑓 𝑌𝑖𝑗 ≤  𝑌(𝑔𝑗+1)𝑗 

                  =  𝑌𝑖𝑗 𝑖𝑓 𝑌(𝑔𝑗+1)𝑗 < 𝑌𝑖𝑗 < 𝑌(𝑛𝑗−𝑔𝑗)𝑗 

          =  𝑌(𝑛𝑗−𝑔𝑗)𝑗 𝑖𝑓 𝑌𝑖𝑗 ≥  𝑌(𝑛𝑗−𝑔𝑗)𝑗. 

In other words, the Winsorized mean is computed by replacing the trimmed observations with 

the most extreme untrimmed value from the respective tail. 
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Therefore, the purpose of this project is to determine if the Schuirmann-Yuen test, 

proposed in this paper, is more accurate, under realistic data conditions, than the previously 

proposed Schuirmann and Schuirmann-Welch tests for identifying when the treated and normal 

comparison groups are equivalent. With regard to the data conditions investigated, in addition to 

unequal variances and distributions that are nonnormal, but equal in form, this study will extend 

the robustness literature by investigating the properties of the tests when the underlying 

population distributions differ (e.g., one skewed, one normal). This is an important aspect of this 

research because the distribution shapes of clinical and normal comparison groups often differ 

substantially. 

 

Method 

 A Monte Carlo simulation study was used to compare the probability of detecting 

equivalence with: 1) Schuirmann’s equivalence test; 2) Schuirmann-Welch equivalence test; and 

3) Schuirmann-Yuen equivalence test. Several variables were manipulated in this study 

including: a) sample size; b) population standard deviations; and c) distribution shape. The 

conditions utilized in this study are summarized in Table 1. The sample sizes chosen were n = 

20, 100 and 400, and utilized both equal and unequal sample sizes. There were five standard 

deviation conditions. In addition to equal standard deviations across groups, we also investigated 

two levels of unequal standard deviations that were either positively or negatively paired with the 

unequal sample sizes. Positively paired sample sizes and standard deviations means that the 

largest sample size is paired with the largest standard deviation, and the smallest sample size is 

paired with the smallest standard deviation. Negatively paired sample sizes and standard 
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deviations means that the largest sample size is paired with the smallest standard deviation, and 

the largest standard deviation is paired with the smallest sample size.  

There were a total of nine combinations of distribution shapes which were based on a 

normal distribution, a skewed distribution, and distributions containing outliers in one or both 

tails. Positively and negatively skewed distributions were generated using the g- and h- 

distribution (Hoaglin, 1985), where g represents the skewness parameter and h represents the 

kurtosis parameter. More specifically, a highly skewed distribution was generated using g =1 and 

h = 0. To generate data from a g- and h-distribution, standard unit normal variables (Zij) were 

converted to the random variable: 

𝑋𝑖𝑗 =
𝑒𝑔𝑍𝑖𝑗 − 1

𝑔
𝑒

ℎ𝑍𝑖𝑗
1

2  

according to the values of g and h selected for investigation. A negatively skewed distribution is 

created by reflecting the positively skewed distribution before modifying the mean of the 

distribution. To obtain a distribution with standard deviation σj, each Xij was multiplied by a 

value of σj. It is important to note that this does not affect the value of the null hypothesis when g 

= 0 (see Wilcox, 1994). However, when g > 0, the population mean for a g- and h- variable is: 

𝜇𝑔ℎ =
1

√𝑔(1 − ℎ)
(𝑒

𝑔2

2(ℎ−1) − 1) 

Thus, for those conditions where g > 0, μgh was first subtracted from Xij before 

multiplying by σj. When working with trimmed means, the population trimmed mean for the jth 

group was subtracted from the variate before multiplying by σj.   

A distribution containing outliers was generated by adding outliers to one or both of the 

tails of a normal distribution. Following the method described by Zimmerman (1994), the 
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outliers were drawn from a normal distribution with a standard deviation five times as large as 

that of the original distribution. For both the single tail and double tail outlier conditions, 10% of 

the total cases were drawn from the outlier distribution. As with the g- and h- distributed data, 

the distributions that contained outliers in only one tail were adjusted so that the population 

means (or trimmed means) were equal to 0. The different distribution shape conditions were 

crossed with the sample size and standard deviation conditions resulting in 405 unique 

conditions that were each evaluated when the null hypothesis was true (Type I error) and when 

the null hypothesis was false (power).   

 Ten thousand simulations were conducted for each condition using a nominal 

significance level of α = .05 and an equivalence interval of 1. For the Type I error conditions the 

means were set to 0 and 1 (i.e., the difference between the means is the same as the equivalence 

interval). For the power conditions the means were set at 0 and .66 (i.e., the difference between 

the means is less than the equivalence interval).  

 

Results 

Empirical Type I error rates within the interval of .025 –.075 [(i.e., α ± .5α = .05 ± 

(.2)(.05)] are considered to be robust. Figures 1 and 2 contain empirical Type I error rates for the 

conditions involving identically shaped distributions and non-identically shaped distributions, 

respectively. Tables 2 and 3 contain the empirical power values for the conditions involving 

identically shaped distributions and non-identically shaped distributions, respectively. Note that 

when the distribution shapes are the same, it is not necessary to reverse the order of the 

population standard deviations because that would just replicate previous conditions, but when 
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the distribution shapes are different reversing the order of the population standard deviations 

results in unique conditions. 

Since the pattern of results was very similar across the moderately and extremely unequal 

standard deviation conditions, we report only the results for the extremely unequal standard 

deviation conditions, since this is the condition that has the greatest effect on the test statistics. 

Further, since the pattern of results for N = 40, N = 100, and N = 200 were very similar only the 

Type I error rates for N = 100 and power rates for N = 40 and 100 are displayed. However, we 

do discuss the results below and full tables of results are available by contacting the authors. 

 

Type I Error 

Identical distribution shapes. The results showed that when both the treated and the 

normative comparison groups had a normal distribution, Type I error rates were maintained 

within the interval of .025-.075 for all three equivalence tests. The exception was when standard 

deviations and sample sizes were unequal, in which case the Type I error rates for the original 

Schuirmann procedure were inflated in the negative paired situation (e.g., ..129 for N = 100) and 

deflated in the positive pairing situation (e.g., .002 for N = 100).  

When the distribution shapes were both skewed or contained outliers, Type I error rates 

were maintained within the conservative bounds most effectively with the Schuirmann-Yuen 

test. Although the Schuirmann-Yuen had some Type I error rates that fell outside of the 

acceptable bounds when both distributions were extremely skewed and variances were unequal, 

the original Schuirmann and Schuirmann-Welch procedures failed in many more conditions than 

the Schuirmann-Yuen, and when they did fail the rates were often very disparate from the 

nominal level. For example, with n1 = 25 and n2 = 15, and unequal variances, the Type I error 



ROBUST NORMATIVE COMPARISON TESTS                                                                       21 
 

rate for the Schuirmann test was .177 and for the Schuirmann-Welch was .145. Further, in the 

large sample size condition (N = 200), rates for the Schuirmann-Yuen were always maintained 

within the acceptable Type I error bounds, whereas the pattern for the Schuirmann and 

Schuirmann-Welch procedures was similar to that for the small sample sizes, with rates regularly 

falling below or above the acceptable levels. 

Different distribution shapes. When the two groups had different distribution shapes, 

the empirical Type I error control of the Schuirmann-Yuen was substantially better than that of 

the original Schuirmann or the Schuirmann-Welch. More specifically, although the Schuirmann-

Yuen had Type I error rates that fell outside the acceptable bounds in one of the 30 conditions 

reported in Table 3 (normal and skewed distribution, and unequal variances), the Schuirmann 

and Schuirmann-Welch procedures each had Type I error rates that fell outside the acceptable 

bounds in more than half of the conditions. Further, although the rates across all conditions 

ranged from .010 to .091 for the Schuirmann-Yuen, the rates for the Schuirmann ranged from 

.000 to .271, and the rates for the Schuirmann-Welch ranged from .000 to .180.  When sample 

sizes were large, as with identical distribution shapes, the empirical Type I error rates were well 

controlled by the Schuirmann-Yuen in all conditions, but commonly fell outside the acceptable 

bounds with the Schuirmann and Schuirmann-Welch.  

 

Power 

The power values that are greyed out in Tables 2 and 3 represent conditions in which the 

Type I error rates were not within the interval of robustness, and thus the power rates are biased 

(and should not be interpreted). 
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 Identical distribution shapes. When distribution shapes were normal, standard 

deviations were equal, and sample sizes were equal, the power rates were slightly higher for the 

Schuirmann and Schuirmann-Welch tests than the Schuirmann-Yuen. This result is due to the 

fact that the Schuirmann-Yuen employs trimmed means and thus the test statistics were based on 

a smaller sample size. When the distributions shapes were nonnormal but identical, the power 

rates for the Schuirmann-Yuen were generally much higher than those for the Schuirmann or 

Schuirmann-Welch (and it also important to notice that many of the power rates for the 

Schuirmann and Schuirmann-Welch are not interpretable because the Type I error rates fell 

outside the acceptable range). For example, with equal sample sizes and variances and N = 100, 

power for both the Schuirmann and Schuirmann-Welch procedures was .203, whereas the power 

of the Schuirmann-Yuen was .394.  

When sample sizes were large (N = 400), the differences in power with nonnormal 

distributions are even more exaggerated, with power rates for the Schuirmann and Schuirmann-

Welch ranging from about .3 to .6 and rates for Schuirmann-Yuen ranging from about .7 to .9. 

For example, when both distribution were extremely positively skewed, sample sizes were 150 

and 250, and variances were unequal, the power rates for the Schuirmann and Schuirmann-

Welch were .385 and .481, respectively, and the power for the Schuirmann-Yuen was .812. 

Different distribution shapes. When the distributions had different distribution shapes, 

the same pattern of results emerged; however because of the poor Type I error control of the 

Schuirmann and Schuirmann-Welch procedures under these conditions, there were very few 

opportunities for unbiased comparisons with the Schuirmann-Yuen. However, for the conditions 

in which comparisons were possible, the Schuirmann-Yuen was always more powerful. For 

example, when one distribution was skewed and one distribution contained outliers in both tails, 
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n1 = 50 and n2 = 50, and variances were unequal, power for the Schuirmann was .201, for the 

Schuirmann-Welch was .198 and for the Schuirmann-Yuen was .368.  

When sample sizes were large (N = 400), the same pattern emerged as for the smaller 

sample sizes, with the power rates for the Schuirmann-Yuen often substantially higher than the 

rates for the other procedures. For example, when one distribution was skewed and one 

distribution contained outliers in both tails, n1 = 150 and n2 = 250, and variances were equal, 

power for the Schuirmann was .475, for the Schuirmann-Welch was .455 and for the 

Schuirmann-Yuen was .876. 

 

Discussion 

When a client enters therapy for a given issue, such as depression, the end goal in many 

cases is for the client’s behavior on that issue to return to a state of normal functioning. 

Normative comparison tests allow researchers to determine if the treated group has gone through 

a change back to normal functioning by comparing the treated group to a normative group on the 

measure of interest. Kendall et al. (1999) employed Schuirmann’s two one–sided tests of 

equivalence (1987) to determine if a treated and a normative comparison group are equivalent on 

a particular measure. Equivalence tests have been shown to be more effective than traditional 

hypothesis tests (e.g., Student’s t-test) for determining equivalence, but traditional equivalence 

tests are not robust when the assumptions of normality and/or homogeneity of variance are 

violated. Dannenberg et al. (1994) incorporated a heteroscedastic test statistic (Schuirmann-

Welch test) that was found to be robust when the variance homogeneity assumption was 

violated. However, there remained concern over the robustness of this test to distribution 

nonnormality or the presence of outliers.  
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The purpose of this paper was to compare the robustness of the original Schuirmann 

(1987) and Schuirmann-Welch (Dannenberg et al., 1994) tests of equivalence when the standard 

deviations were unequal and the population distributions were nonnormal, to that of trimmed 

means based Schuirmann-Yuen procedure described in this paper. It was expected that the 

Schuirmann-Yuen test, which incorporated a heteroscedastic test statistic with trimmed means, 

would provide better Type I error control and power under conditions of variance inequality and 

distribution nonnormality. 

The results of this study indicate that the Schuirmann-Yuen test provides much better 

control of empirical Type I error rates and higher power than the Schuirmann or Schuirmann-

Welch tests. Although the Schuirmann-Yuen did not always provide acceptable Type I error 

control with small sample sizes, the rates with larger sample sizes were well controlled and the 

rates across all conditions were much better controlled than those of the original Schuirmann or 

Schuirmann-Welch procedures. Further, the power of the Schuirmann-Yuen procedure when at 

least one of the distributions was nonnormal was regularly higher than that for the Schuirmann or 

Schuirmann-Welch procedures, an advantage that is of utmost importance to researchers 

conducting normative comparisons. One caution raised by an anonymous reviewer is that, 

although the Schuirmann-Yuen compares trimmed means and is thus an effective method for 

comparing the typical individual in one group with that of the typical individual in another 

group, it possible that the underlying distribution shapes could be very different. Thus, 

researchers are encouraged to explore the distribution shapes of their variables and be cautious of 

comparing central tendencies when distribution shapes differ. In order to improve the 

accessibility of the methods described in this paper, an R (R Development Core Team, 2010) 

function for conducting the normative comparison tests described in this paper is available at 
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http:/www.???? (omitted for blind review). R is an open-source statistical software program that 

is available at www.rproject.org. 

The need for robust statistical tests has increased over the years with the realization that 

traditional statistical tests are unreliable when the assumptions of normality and homogeneity of 

variance are violated. This is especially important for researchers in the field of clinical 

psychology, where these assumptions are rarely satisfied. To conclude, the proposed 

Schuirmann-Yuen equivalence test is recommended for conducting normative comparisons 

because it provides better Type I error control and greater power than the original Schuirmann or 

Schuirmann-Welch equivalence tests.  

http://www.rproject.org/
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Table 1 

 

Conditions for the Monte Carlo Simulation Study 

 

n1, n2   σ1, σ2    γ1, γ2  

 

20, 20   1, 1    normal, normal 

15, 25   .7, 1.3    normal, +skew 

25, 15   .5, 1.5    normal, outlier (+/-) 

50, 50   1.3, .7    normal, outlier (+) 

25, 75   .7, 1.3    +skew, +skew 

75, 25       +skew, outlier (+/-)  

200, 200      -skew, +skew 

150, 250      outlier (+/-), outlier (+/-) 

250, 150      outlier (+), outlier (+) 

Note: γ = distribution shape; +skew = positively skewed; -skew = negatively skewed; outlier (+) 

= outliers in the upper tail only; outlier (+/-) = outliers in the upper and lower tails.  
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Table 2  

 

Power Rates with Identical Distribution Shapes 

 

n1, n2           Sch          Sch-W          Sch-Y 

   σ1=1, σ1=.5,  σ1=1, σ1=.5,  σ1=1, σ1=.5, 

   σ2=1 σ2=1.5  σ2=1 σ2=1.5  σ2=1 σ2=1.5 

γ1 = γ2 = normal  

20, 20   .282 .243  .281 .238  .254 .217    

15, 25   .274 .170  .270 .277  .247 .248 

25, 15   .265 .298  .261 .195  .255 .172 

50, 50   .511 .238  .510 .445  .467 .387 

25, 75   .438 .277  .436 .513  .409 .446 

75, 25   .414 .195  .409 .291  .362 .274 

γ1 = γ2 = +skew  

20, 20   .089 .212  .085 .208  .207 .250  

15, 25   .077 .141  .042 .182  .123 .247   

25, 15   .098 .222  .133 .170  .225 .225 

50, 50   .203 .302  .203 .298  .394 .357 

25, 75   .140 .110  .069 .262  .275 .399 

75, 25                      .157     .422  .283 .314  .355 .294 

γ1 = γ2 = outlier (+/-)  

20, 20   .089 .096  .087 .093  .223 .183  

15, 25   .087 .043  .093 .103  .197 .218 

25, 15   .087 .109  .087 .058  .194 .117 

50, 50   .251 .221  .250 .218  .402 .319 

25, 75   .174 .048  .203 .260  .332 .385 

75, 25                          .183 .297  .194 .120  .329 .229 

γ1 = γ2 = outlier (+) 

20, 20   .100 .178  .099 .176  .219 .184   

15, 25   .091 .121  .067 .192  .194 .221 

25, 15   .079 .238  .121 .159  .196 .149 

50, 50                          .243 .291  .243 .290  .398 .355 

25, 75                          .188 .129  .129 .264  .309 .403 

75, 25                          .215 .394  .295 .246  .337 .235 

Note: Sch = Schuirmann; Sch-W = Schuirmann-Welch; Sch-Y = Schuirmann–Yuen; γ = 

distribution shape; +skew = positively skewed; outlier (+/-) = outliers in the upper and lower tails 

outlier; (+) = outliers in the upper tail only; grey color = Type I error rate not controlled within α 

+/- .5α (.025-.075). 
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Table 3 

 

Power Rates with Different Distribution Shapes 

 

n1, n2           Sch          Sch-W          Sch-Y 

   σ1=1, σ1=.5,  σ1=1, σ1=.5,  σ1=1, σ1=.5, 

   σ2=1 σ2=1.5  σ2=1 σ2=1.5  σ2=1 σ2=1.5 

γ1 = normal; γ2 = +skew  

20, 20   .296 .271  .296 .265  .249 .240   

15, 25   .238 .188  .263 .283  .210 .238  

25, 15   .318 .362  .294 .245  .244 .224 

50, 50   .376 .322  .376 .321  .418 .355 

25, 75   .263 .138  .339 .352  .365 .422 

75, 25   .443 .450  .352 .293  .349 .259 

γ1 = normal; γ2 = outlier (+/-)  

20, 20   .192 .116  .191 .109  .243 .166 

15, 25   .124 .054  .172 .119  .223 .210 

25, 15   .191 .134  .157 .060  .192 .140 

50, 50   .307 .239  .307 .233  .395 .341 

25, 75   .182 .046  .300 .273  .363 .428 

75, 25   .369 .358  .233 .134  .323 .222 

γ1 = normal; γ2 = outlier (+)  

20, 20   .287 .262  .286 .256  .243 .193 

15, 25   .223 .148  .242 .244  .216 .174 

25, 15   .306 .322  .285 .211  .225 .180 

50, 50   .373 .306  .371 .302  .444 .331 

25, 75   .232 .123  .328 .311  .351 .403 

75, 25   .422 .450  .336 .283  .340 .218 

γ1 = +skew; γ2 = outlier (+/-) 

20, 20   .027 .061  .026 .060  .185 .123 

15, 25   .033 .032  .024 .056  .206 .115  

25, 15   .028 .086  .042 .048  .102 .121 

50, 50   .145 .201  .145 .198  .333 .368 

25, 75   .128 .039  .078 .170  .387 .314 

75, 25   .103 .288  .170 .120  .211 .298 

γ1 = -skew; γ2 = +skew 

20, 20   .245 .230  .244 .225  .224 .224 

15, 25   .242 .153  .249 .240  .228 .232 

25, 15   .218 .271  .237 .187  .221 .234 

50, 50   .310 .303  .310 .302  .375 .345 

25, 75   .299 .145  .299 .304  .321 .373 

75, 25   .299 .407  .299 .282  .325 .266 
Note: Sch = Schuirmann; Sch-W = Schuirmann-Welch; Sch-Y = Schuirmann–Yuen; γ = distribution 

shape; +skew = positively skewed; outlier (+/-) = outliers in the upper and lower tails outlier; (+) = 

outliers in the upper tail only; grey color = Type I error rate not controlled within α +/- .5α (.025-.075). 
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Figure 1  

 

Type I Error Rates with Identical Distribution Shapes 
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Figure 2  

 

Type I Error Rates with Different Distribution Shapes 

 

 
 

Note: Pos Skew = positively skewed; Neg Skew = negatively skewed, Outliers (+/-) = outliers in 

the upper and lower tails; Outliers (+) = outliers in the upper tail only. 
 


