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Abstract

The use of structural equation modeling in personality research has been increasing steadily over the
past few decades. In evaluating the adequacy of a particular model researchers are often interested in
evaluating not only the overall ®t of the model, but also which of the proposed parameters are
signi®cant. Researchers who apply unrestricted post hoc model modi®cations, or who evaluate the
signi®cance of individual parameters without adopting some form of type I error control, risk
capitalizing on chance. A Monte Carlo study was used to demonstrate the e�ectiveness of simple
Bonferroni-type procedures for controlling the rate of type I errors when multiple parameters are
evaluated in the structural portion of a theoretical model. 7 2000 Elsevier Science Ltd. All rights
reserved.

1. Introduction

The use of structural equation modeling (SEM) in personality research is rapidly increasing,
particularly with the increased dissemination of information regarding SEM and the
availability of user-friendly SEM software packages. The primary purpose of SEM rests in
assessing the adequacy of a predetermined theoretical model to explain relationships among
observed and latent variables. In fact, the necessity for researchers to explicitly state their a
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priori causal theory represents one of the strongest arguments in support of SEM (Martin,
1987).
In evaluating the adequacy of a particular model researchers are often interested not only in

the overall ®t of the model, but also which of the proposed relationships (parameters) in the
model are (or are not) important. A diverse literature has emerged describing available options
for determining the `importance' or `signi®cance' of individual parameters, however two
alternatives have dominated the empirical literature. The ®rst option is to evaluate the
signi®cance of each parameter at a speci®ed signi®cance level (a ), declaring statistically
signi®cant parameters important and nonsigni®cant parameters unimportant to the model. The
second option is to use sequential model modi®cation indices (e.g. Wald Test, Lagrange
Multiplier) to identify which parameters to remove from or add to the model in order to
improve the ®t of the model to the sample data. Individual parameters are considered
signi®cant if they contribute signi®cantly to the overall ®t of the model. A common problem
with both of the aforementioned methods is that they risk capitalizing on chance when
evaluating the signi®cance of multiple parameters in a structural model. This paper discusses
how these two methods risk capitalizing on chance, as well as proposing an alternative method
for evaluating the signi®cance of structural model parameters.

1.1. Model modi®cation

Model modi®cation involves sequential testing procedures for adding (deleting) parameters
to (from) a model in order to improve the overall ®t of the model to the sample data. This
process has been labeled a `speci®cation search' (Kaplan, 1988; Long, 1983; MacCallum, 1986)
and the `speci®cation errors' are the misspeci®ed paths in the model that if modi®ed may
improve the ®t of the model to the data. Several procedures for conducting speci®cation
searches have been discussed, including the modi®cation index (Joreskog & Sorbom, 1984;
MacCallum, 1986; Sorbom, 1989), the Lagrange multiplier test (Bentler, 1989; MacCallum,
1986) and the Wald test (Lee, 1985; Wald, 1943). For researchers interested in evaluating the
signi®cance of individual parameters, the criteria for signi®cance would be that the parameter
contribute signi®cantly to the overall ®t of the model. In fact, the precise use of modi®cation
indices for identifying which hypothesized relationships in a con®rmatory model are signi®cant
is appealing, however this speci®c use of modi®cation indices in con®rmatory analyses has
consistently been replaced by an unrestricted exploration for the best ®tting model.
Although model modi®cation strategies were initially proposed as exploratory techniques for

examining possible model improvements, some researchers also recommend investigating
modi®cations that may provide a good ®tting model with an even better ®t (see MacCallum,
1986). In the latter case, several issues must be considered. First, researchers adopting a
speci®cation search must acknowledge that the research is inductive and that no hypothesis is
being tested, no theory is assessed and no causal model is con®rmed (Biddle & Marlin, 1987).
Regardless of the type of model modi®cation, changes to the model are data-driven and thus
do not provide any substantive evidence about the validity of the model. As Hancock (in press,
p. 3) describes, model modi®cations ``tempt the researcher to trade the hat of hypothesis
con®rmer for that of the hypothesis explorer''. The probability of making decision errors is
related to the number of model modi®cations (MacCallum, 1986; MacCallum, Roznowski &
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Necowitz, 1992; also see Hancock (in press) for a Sche�eÂ procedure for controlling decision
errors with multiple model modi®cations), the criteria adopted for declaring model
modi®cations statistically signi®cant (Green & Babyak, 1997; Hancock, in press), as well as the
reliability of the model modi®cation tests to locate the speci®cation error (discussed below).
Second, recent evidence has shown that speci®cation searches can be unreliable detectors of

speci®cation errors. For example, Kaplan (1988), MacCallum (1986) and Silvia and
MacCallum (1988) have found the modi®cation index to be an unreliable indicator of
speci®cation errors. In addition, Hutchinson (1993) found that the univariate and multivariate
Lagrange Multiplier and Wald tests performed poorly for most types of model
misspeci®cations. Her ®ndings contradict those of Chou and Bentler (1990) who report that the
multivariate Lagrange Multiplier is a reliable indicator of model misspeci®cations. In addition,
MacCallum et al. (1992) found that model modi®cations carried out in sequential speci®cation
searches can be very unstable, especially for small or moderately-large sample sizes. That is, the
`best ®tting' model found with one sample may not generalize to an independent sample from
the same population. Given the complexity of covariance (correlation) matrices there is a high
probability that in any model there will be modi®cations available that would improve the ®t
of the model to the data, however, such modi®cations may be speci®c to the particular sample
and not generalize to other samples in the population.
A ®nal issue concerning post hoc model modi®cation is the meaningfulness of the suggested

modi®cations. Researchers have been warned against making model modi®cations that are not
justi®ed theoretically (Green & Babyak, 1997; Long, 1983; MacCallum et al., 1992; Sorbom,
1989) in order to control against modifying parameters simply to improve the ®t of the model.
For example, Steiger (1990, p. 175) asks ``what percentage of researchers would ®nd themselves
unable to think up a `theoretical justi®cation' for freeing a parameter?''. In a review of SEM
studies conducted by Breckler (1990) and MacCallum et al. (1992) only one study (of the 37
that acknowledged making model modi®cations) declined to make a model modi®cation
because it would not make sense theoretically to do so. Thus, the validity of justi®cations made
for data-driven model modi®cations may be very suspect.
Therefore, although model modi®cation indices are based on improving the ®t of the model

and thus improving the probability of accurately determining the importance of individual
parameters in the model, the risk of making decision errors with model modi®cations is too
extreme to recommend their use in con®rmatory SEM analyses.

1.2. Statistical multiplicity

The multiplicity problem in statistical inference refers to selecting signi®cant ®ndings from a
large set of ®ndings that support particular hypotheses. In SEM, researchers are often
exploring models with numerous parameters to be estimated, and the probability that any
parameter will be signi®cant by chance increases as a function of the number of parameters to
be tested in the model. Thus, a researcher who is examining the signi®cance of several
parameters in a model, each at a speci®ed signi®cance level (a ), may actually have a much
greater probability than a of falsely declaring relationships signi®cant in the model.
One suggestion is that SEM researchers adopt a strategy that controls the probability of

falsely declaring parameters signi®cant (i.e. committing type I errors) when multiplicity exists,
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although there are a few arguments for NOT applying this method. First, there is often a high
degree of interrelatedness between parameters in a model (Kaplan & Wenger, 1993), and
therefore methods for controlling the rate of type I errors become overly conservative. Second,
as Kaplan and Wenger (1993) argue, it is more important in tests of parameters to maximize
power (control type II errors) because failure to include important parameters can bias
parameter estimates. Lastly, an issue that has plagued multiple comparison researchers for
decades (see Games, 1971; Hancock & Klockars, 1996), is how to de®ne a particular set
(family) of hypotheses when controlling the rate of type I errors in SEM.
First, the fact that parameters in a model are often highly intercorrelated does a�ect the

conservativeness of type I error controlling procedures. Speci®cally, the size and pattern of the
input covariance matrix determines the extent to which the power of type I error controlling
procedures are a�ected. However, since researchers are typically unaware of the degree to
which parameters within their model are correlated, and the correlations between parameter
estimates decrease when a model is well-identi®ed, researchers must be conscious of the
possible risk of falsely declaring parameters signi®cant. Thus, besides assuming that every
parameter in the model was correlated perfectly with every other parameter, any degree of
independence between parameters will increase the probability of making type I errors above
the nominal signi®cance level. MacCallum (1995) explains that researchers should also be
aware that models with several (often highly correlated) parameters, although tending to ®t the
data well, are not discon®rmable and thus make ®nding a good ®t meaningless.
Second, although power is important in all statistical tests, no increase in power is

meaningful if the rate of type I errors is not controlled. Therefore, although maximizing power
ensures that important parameters are retained in a model, an increase in power is not justi®ed
if there is a large risk of falsely retaining nonsigni®cant parameters.
Lastly, the goal of specifying a family of hypotheses is to select a set that is not so large that

it is impossible to ever reject any hypothesis, yet is not so small that it does not provide
adequate control of type I errors. Kirk (1995) states that a family of tests should consist of
those tests that are related in terms of their content and intended use. There has been much
discussion in the literature regarding separate analyses of the measurement model (MM) and
the structural model (SM) in SEM (e.g. Anderson & Gerbing, 1988; Hunter & Gerbing, 1982;
Lance, Cornwell & Mulaik, 1988). Lance et al. (1988, p. 185) summarize that ``relations in
both submodels (SM and MM) represent causal hypotheses, but relations among variables in
the structural portion of the model are usually of greater substantive interest''. This paper
recommends that the SM and MM be treated as separate families and propose a method for
controlling the rate of type I errors in the SM. This is not to say that controlling type I errors
in the MM is not important, yet only beyond the scope of this investigation.

1.3. Methods for controlling type I errors in SEM

Selecting the best method for controlling type I errors in SEM is not unlike selecting the best
multiple comparison procedure within an analysis of variance framework, the goal is to ®nd
the most powerful method that is also able to maintain the rate of type I errors at a speci®ed
level. As in multiple comparison research though, the controversy is how to specify a level at
which to control the rate of type I errors. The typical approach in SEM has been to set the
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error rate per parameter (ERPP). With this method, the signi®cance of individual parameters
in a model are evaluated at a speci®ed signi®cance level (e.g. a � 0:05). This method ignores
the issue of statistical multiplicity and thus allows the overall rate of type I errors to in¯ate
with the number of parameters tested. Another possibility is to control the familywise error
rate (FWE), where the error rate is set for a family of conceptually related tests (e.g.
Bonferroni). As stated above, the method adopted in this paper is to control the error rate for
the SM family of hypotheses. This family includes all hypotheses to be tested in the SM. A
third possibility is to control the false discovery rate (FDR). The FDR was presented by
Benjamini and Hochberg (1995) and is de®ned as the expected proportion of the number of
erroneous rejections to the total number of rejections. Research on the FDR has shown that it
represents a compromise between the often liberal ERPP and the often conservative FWE
methods of controlling for type I errors when multiplicity exists (Benjamini & Hochberg, 1995;
Benjamini, Hochberg & Kling, 1994; Keselman, Cribbie & Holland, 1999). The FDR should be
especially appealing to SEM researchers who are not willing to accept the large losses in per-
parameter power typically associated with FWE procedures, but also do not want to
completely ignore the multiplicity issue.
Therefore, the goal of this paper is to compare the power and FWE control of multiple

testing strategies for evaluating the signi®cance of multiple parameters in the structural portion
of a latent variable model.

2. Method

A Monte Carlo study was used to compare the FWE control and per-parameter power of
the ERPP method typically adopted by SEM researchers with that of two FWE controlling
procedures and the FDR controlling procedure due to Benjamini and Hochberg (1995). The
FWE was controlled over the number of hypotheses tested in the SM of two theoretical
models1, and the per-parameter power is de®ned as the probability of correctly declaring
individual parameters in the SM signi®cant.

2.1. Theoretical models

Two theoretical models were investigated, each proposing a saturated SM (i.e. tested
hypotheses concerning the signi®cance of all covariances between latent variables).
Misspeci®cations were established by generating data with at least one of the structural model
covariances equal to zero. Model A (Fig. 1) contained three hypothesized covariances (three
latent variables) in the SM, one which was misspeci®ed. Model B (Fig. 2) contained 10
hypothesized covariances (®ve latent variables) in the SM, three of which were misspeci®ed.
Two observed variables were generated for each latent variable in each model using

1 This paper demonstrates a method for controlling the FWE over the number of hypotheses tested in the struc-

tural portion of a latent variable model. This implies that the rate of type I errors was controlled only for par-
ameters which contain testable hypotheses. For example, the error term for a latent variable may be estimated,
although there is typically no direct hypothesis tested and therefore no type I error control is required or imposed.
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multivariate data generation procedures outlined in Kaiser and Dickman (1962). Structural
model factor correlations were set at 0.15, minimizing ¯oor and ceiling e�ects. There were 200
cases per replication. For identi®cation and scaling of the models one parameter from each
latent variable in the MM was set at unity and all other parameters (including error terms)
were estimated. This resulted in 9 degrees of freedom for model A and 35 degrees of freedom
for model B. All SEM analyses were performed using SAS PROC CALIS. In addition, all
analyses utilized the sample covariance matrix and maximum likelihood estimation.

2.2. Multiple testing procedures

2.2.1. Bonferroni method
In this well known procedure, the p-values corresponding to the k parameter estimates are

compared to an app � afw=k, where app is the per-parameter type I error rate and afw is a
predetermined, acceptable, FWE. The Bonferroni method controls the actual FWE at afw by
declaring any parameter with pR app signi®cant.

Fig. 1. Structural model A. X, Y and Z represent latent variables, MS represents a misspeci®ed parameter (i.e.
COVxy � 0).

Fig. 2. Structural model B. V, W, X, Y and Z represent latent variables, MS represents a misspeci®ed parameter
(i.e. COVvw � 0, COVvz � 0, COVxw � 0).
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2.2.2. Hochberg's (1988) sequentially acceptive step-up Bonferroni procedure
In this procedure, the p-values corresponding to the k parameter estimates are ordered from

smallest to largest. Then, for any I � k, kÿ 1, . . . , 1, if pI R a/(kÿI + 1), the Hochberg
procedure rejects all parameters with pI ' (I 'R I ). Therefore, one begins by testing the largest p-
value, pk, and declares all parameters signi®cant if pk R a. If pk > a then the parameter
associated with pk is declared nonsigni®cant and one proceeds to compare pk ÿ 1 to a/2. If pk ÿ 1

R a/2 then all parameters associated with pI �I � kÿ 1, . . . , 1� are declared signi®cant, but if
pk ÿ 1 > a/2 then the parameter associated with pk ÿ 1 is declared nonsigni®cant and one
proceeds to compare pk ÿ 2 to a/3, and so on.

2.2.3. Benjamini and Hochberg's (1995) FDR procedure
Like Hochberg's step-up procedure, the p-values corresponding to the k parameter estimates

are ordered from smallest to largest. Then, for any I � k, kÿ 1, . . . , 1, if pI R a(I/k ), the
FDR procedure rejects all parameters associated with pI ' (I ' R I ). Therefore, one begins by
testing the largest p-value, pk, and declares all parameters signi®cant if pk R a. If pk > a then
the parameter associated with pk is declared nonsigni®cant and one proceeds to compare pk ÿ 1

to a(k ÿ 1/k ). If pk ÿ 1 R a(k ÿ 1/k ) then all parameters associated with pI �I � kÿ 1, . . . , 1�
are declared signi®cant, but if pk ÿ 1 > a(k ÿ 1/k ) then the parameter associated with pk ÿ 1 is
declared nonsigni®cant and one proceeds to compare pk ÿ 2 to a/(kÿ 2/k ), and so on.

3. Results

All results were averaged over 2500 simulations using a nominal signi®cance level of 0.05.
Preliminary analyses were conducted to determine the ®t of the models to the data. The mean
goodness of ®t index (GFI), adjusted goodness of ®t index (AGFI) and root mean square error
of approximation (RMSEA) for models A and B are presented in Table 1. Model A and B
both ®t the data well (average GFIs > 0.97, AGFIs > 0.94, RMSEAs < 0.02) even though
both models contained misspeci®ed parameters.

3.1. FWE control

For model A, each of the multiple testing methods maintained the FWE rate for the SM at
or below 0.05 �ERPP � 0:030, Bonferroni � 0:008, Hochberg � 0:025, FDR � 0:026, see Fig. 3).

Table 1
Average ®t indices (and range) for models A and Ba

GFI AGFI RMSEA

Model A 0.990 (0.962±1.000) 0.966 (0.868±0.999) 0.019 (0.000±0.123)
Model B 0.976 (0.951±0.992) 0.948 (0.893±0.982) 0.014 (0.000±0.073)

a GFI=goodness of ®t index; AGFI=goodness of ®t index adjusted for degrees of freedom; RMSEA=root mean
square error of approximation.
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Only one null e�ect parameter was tested in model A and therefore it was expected that all
methods would control the FWE rate at the nominal level. The FWE rate increased
dramatically in model B (which contained three null e�ect parameters) for the ERPP method
(0.188). In contrast, the Bonferroni and Hochberg procedures maintained the FWE at
approximately 0.05 (0.017 and 0.035, respectively). The FDR procedure, as expected, represents
a compromise between no type I error control and strict FWE control �FWE � 0:099).

3.2. Per-parameter power

The per-parameter power for the SM of models A and B, for each of the multiple testing

Fig. 3. The FWE for each multiple testing procedure for models A and B.

Fig. 4. The per-parameter power for each multiple testing procedure for models A and B.
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procedures, is presented in Fig. 4. The per-parameter power of models A and B decreased, as
expected, when type I error control was imposed. In model A the per-parameter power of the
Bonferroni (0.623) and Hochberg (0.675) procedures was moderately lower than that of the
ERPP method (0.797), with the power of the FDR procedure (0.710) falling between the no
error control and FWE control procedures. In model B, the per-parameter power of the FDR
procedure (0.651) again represented a compromise between the ERPP method (0.745) and
FWE controlling procedures (0.515 and 0.561 for the Bonferroni and Hochberg procedures,
respectively).

4. Discussion

This paper explored di�erent methods for determining the importance of individual
parameters in SEM. The results of this investigation illustrate the dramatic increase in the SM
FWE rate when the signi®cance of multiple parameters were evaluated without type I error
control, con®rming the need for SEM researchers to incorporate type I error control into their
con®rmatory analyses. Previous recommendations for determining the signi®cance of individual
parameters have focused on the use of model modi®cation indices, however, the uninhibited
use of model modi®cation indices removes the researcher from a position of hypothesis testing,
and instead results in an in¯ated risk of making `sample-speci®c' modi®cations. Therefore, a
more direct approach is needed for evaluating the signi®cance of individual parameters.
This paper highlights the e�ectiveness of simple Bonferroni-type procedures for reducing the

risk of falsely declaring parameters in the SM signi®cant. Even when the overall ®t of the
model is good, there is no guarantee that all of the proposed relationships in the model are
signi®cant (i.e. that the model is correctly speci®ed; see Shevlin & Miles, 1998). In fact, as the
number of parameters to be evaluated increases there is an expected increase in the probability
of falsely declaring individual parameters signi®cant. Therefore, as the size and complexity of
studies (and hence models) in the social and behavioral sciences increases, the need for proper
error control measures becomes increasingly important.
The results of this investigation also extend the ®ndings of Benjamini and Hochberg (1995)

and Keselman et al. (1999) that researchers not willing to adopt strict FWE control because of
the large losses in power can instead adopt more liberal FDR control, a compromise between
no type I error control and strict FWE control. Researchers adopting FDR control when
testing multiple hypotheses gain considerable power over FWE controlling procedures, while
still reducing the probability of making type I errors.
Although this paper outlines possible methods for controlling the rate of type I errors in the

structural portion of a latent variable model, future research needs to be conducted exploring
the issues and implications of using Bonferroni-type procedures to control the rate of type I
errors in SEM. For example, this investigation explored the need to control the rate of type I
errors in the SM, although further investigation needs to be conducted into controlling the rate
of type I errors in the MM as well. In addition, this paper explored hypothesized relationships
concerning latent variable covariances with ®xed e�ect sizes, however, further research is also
needed into controlling the rate of type I errors in the SM with di�erent forms of hypothesized
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relationships, di�erent patterns of misspeci®cation, as well as varying e�ect sizes across the
relationships.
To summarize, as the number of researchers in the social and behavioral sciences using SEM

increases, the need for clear guidelines for conducting analyses increases as well. Researchers
who do not control for statistical multiplicity in SEM, or who utilize unrestricted speci®cation
searches to determine the signi®cance of parameters in their models, risk `capitalizing on
chance'. Therefore, in order to improve the reliability and validity of the results of SEM
analyses researchers are recommended to apply simple Bonferroni-type procedures that control
for statistical multiplicity when determining the importance of individual parameters in SEM
analyses.
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