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Abstract

Alternatives for positively skewed and heteroscedastic data include the Yuen-Welch (YW)

test, data transformations, and the generalized linear model (GzLM). Because the GzLM is

rarely considered in psychology compared to the other two, we compared these strategies

conceptually and empirically. The YW test generally has satisfactory power, but its

trimmed mean can deviate substantially from the arithmetic mean, which is often the

desired parameter. The gamma GzLM can be used as a substitute for the log

transformation and addresses the limitations in inference for the YW and data

transformations.

Keywords: generalized linear model, robust statistics, arithmetic mean, geometric

mean, transformations, Box-Cox, gamma, trimmed mean, ANOVA
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The gamma generalized linear model, log transformation, and the robust Yuen-Welch test

for analyzing group means with skewed and heteroscedastic data

The one-way analysis of variance (ANOVA) is commonly used in psychological

research for detecting group mean differences. Under conventional applications, estimation

efficiency comes at the cost of strong assumptions about the error structure —

homoscedasticity and normality (Fox, 2008). When these assumptions are even slightly

violated, power suffers (Tukey, 1960). When assumptions are grossly violated, statistical

inference is rendered invalid (Fox, 2008). It is very often the case that assumptions are

violated, thereby making the availability of alternatives necessary (Golinski & Cribbie,

2009; Micceri, 1989).

For analyzing skewed and heteroscedastic data, two approaches include the

Yuen-Welch test (Wilcox, 2005) from the robust statistical framework and data

transformations. However, neither can make inference to the arithmetic mean. Popularized

by Nelder and Wedderburn (1972), though less applied in the analysis of continuous data

in psychology, is the generalized linear model (GzLM).

We focus on the analysis of continuous outcomes whose data are non-negative,

positively skewed, and heteroscedastic, specifically when the variance is proportional to the

mean. These characteristics have been reported to be common with psychological data

(Grissom, 2000; Micceri, 1989). We begin by describing the Yuen-Welch test, power

transformations, and their limitations that motivate our consideration of the GzLM. We

introduce the GzLM structure, focusing on the gamma model. The simulation then

compares these estimators for examining group differences.

Alternative Approaches

Yuen-Welch test. The Yuen-Welch (Wilcox, 2005) omnibus test for group

differences generalizes Yuen’s (1974) proposal to use trimmed means alongside Winsorized

variances. The impact of nonnormality is minimized by trimmed means and the associated
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Winsorized variances; the impact of heteroscedasticity is minimized by a nonpooled

standard error and an adjustment to the degrees of freedom. Details on computed terms

can be found in Wilcox’s text (2005, p. 267).

The trimmed mean is based on the removal of some proportion of cases from

distribution tails. Trimming may be done symmetrically or asymmetrically in varying

magnitudes, but 20% symmetric trimming has been recommended to applied researchers

for maintaining Type I error and power rates under normal and contaminated distributions

(Keselman, Wilcox, Othman, & Fradette, 2002). However, the trimmed mean estimates the

population trimmed mean — the location for a distribution whose tails are trimmed away,

and therefore unaccounted for. In asymmetric distributions, its confidence intervals

generalize to only 60% of the sampled population (Bonett & Price, 2002), and the 20%

trimmed mean is representative of only the ’typical’ responses. If one is indeed interested

in only the typical response and power, then the loss of estimator sufficiency may be

justified, and recommendations to “bypass classical parametric statistics” altogether

(Erceg-Hurn & Mirosevich, 2008) may be wholly supported.

However, generalizability is important in some areas. Some variables are typically

distributed with positive skewness at the population level, such as response times, clinical

dysfunction, and financial costs (Kilian, Matschinger, Löeffler, Roick, & Angermeyer, 2002;

Manning, 1998; Neal & Simons, 2007; Ratcliff, 1993). Consequently, a researcher may be

more satisfied with inferences that do include distribution tails. Consider, for example, the

cost of mental health services. Most costs incurred by individuals may fall in some

moderate range, but it would not be uncommon to also observe the few who incur much

greater costs. Group trimmed mean estimates would provide cost estimates that reflect the

typical cases, but any extrapolation would not capture the reality that there are those who

consume more resources. Similarly, in reaction time analyses, data in the tails may reflect

true processes, and so the ideal analysis should eliminate as few of the meaningful data of

interest (Ratcliff, 1993).
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Raw data transformations. Power transformations can reduce skewness and

stabilize variance. When the variance changes with the mean by some power relationship

for a strictly positive variable, the Box-Cox class of power transformations is suitable (Box

& Cox, 1964). The Box-Cox transformation is defined by

Y ′ =


ln (Y ) if λ = 0

Y λ−1
λ

if λ 6= 0
(1)

where Y is the response variable in original scale, Y ′ is the corresponding variable in

transformed scale, and λ is the power parameter. The natural log transformation (λ = 0)

is commonly used in psychology; the newly transformed Y ′ would be submitted to an

ANOVA/regression, whereupon the least squares estimation advantage in efficiency could

still be harboured (Fox, 2008). The model would be

ln (Y )=β0 + β1x1 + . . .+ βpxp + ε, (2)

where the log-transformed response, ln (Y ), is expressed as a linear function of p predictor

variables, x1 through xp, and ε is the normally-distributed and homoscedastic error term.

Transformations are most useful when both skewness and heteroscedasticity are

simultaneously and fully corrected, but this result is not guaranteed. An inspection of

log-transformed residuals may very well indicate the presence of heteroscedasticity in the

log error term, thereby invalidating inference (Manning, Mullahy, & Manning, 2001).

Furthermore, in the case of a single categorical predictor, distributions would need to be

made symmetric for each group simultaneously, thereby generally requiring that groups

have similar distributions at the outset.

Models for a log transformed outcome yield inferences to the arithmetic mean in log

scale, which is equivalent to the geometric mean in original scale. With other Box-Cox

transformations, back-transformations yield medians in original scale. An attempt to

interpret arithmetic means in the original scale using a naive back-transformation would
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yield discrepant estimates, as the geometric mean is either equal or lower than the

arithmetic mean. Certainly, there are cases in which interpretation for the mean in

transformed scale is useful, such as when processes are expected to be multiplicative (e.g.,

a change in X predicts a 10% change in Y). However, when processes are additive or when

sum totals are meaningful, the arithmetic mean is more useful; multiplying the mean by

the number of observations yields the total sum, but the same cannot be said for the

geometric mean (or the trimmed mean). Econometricians have used re-transformation

corrections to obtain arithmetic means (Duan, 1983; Manning, 1998), but one may also

leverage the concept of transformations within the GzLM framework to directly make

inferences in original scale.

The generalized linear model

The generalized linear model is typically estimated by maximum likelihood and

relaxes the assumption that residuals are Gaussian-distributed. The distribution could be

specified as any of the exponential family of probability distributions, such as the gamma,

Poisson, binomial, and inverse-Gaussian. Assumptions are then made about the error

distribution and the mean-variance relation (Nelder & Wedderburn, 1972). For example,

the gamma distribution assumes a specific pattern of heteroscedasticity in which the

variance increases proportionally with the mean — specifically, the square of the mean.

These assumptions can be assessed using deviance residuals (which are analogous to

residual sum of squares in ordinary least squares [OLS]). Residuals should tend towards

normality and homoscedasticity for continuous responses.

The GzLM also has the link function, which provides the transformation of the

expected values of the outcome:

η = g (µ) , (3)

in which η is the linear predictor of p predictor variables
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η = β0 + β1x1 + . . .+ βpxp. (4)

When the link function is correctly specified, the relation between the expected

values of the outcome and the set of predictors, η, is linearized. The transformation of the

expected value, and not of the outcome itself, provides the additional advantage of

interpreting the model’s estimates in the outcome’s original scale (Blough, Madden, &

Hornbrook, 1999), which is given by the inverse of the link function.

Unlike raw data transformations, the GzLM allows for the transformation to be

specified separately from the outcome’s distribution (Fox, 2008), highlighting the flexibility

of exploring combinations of various link functions and probability distributions. We

currently consider a particular GzLM suitable for continuous data, with the specifications

for the gamma distribution and the log link function, ln (µ). The gamma distribution

models strictly positive continuous responses and is characterized by two parameters, shape

(α) and scale (s). Expected values are given by the following:

E(Y ) = αs (5)

V ar(Y ) = (αs)2 . (6)

The α parameter controls location, while the scale parameter controls dispersion. A

gamma specification implies a mean-variance relation of heteroscedasticity where the

variance is proportional to the square of the mean (similar to models using the log

transformation).

The log transformation is applied to the expected values, giving the model

ln [E (Y )] = β0 + β1x1 + . . .+ βpxp (7)

or equivalently, in original scale,
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E (Y ) = exp (β0 + β1x1 + . . .+ βpxp) . (8)

The natural log transformation is applied to the expected values (Equation 7), which

is different from E [ln (y)] (Equation 2). From Equation 8, it is readily seen that the

inverse function for the log link function (εη) yields a back-transformed inference to the

arithmetic mean in original scale.

Evaluating model assumptions. While results from the Yuen-Welch test require

no strict assumptions regarding probability distributions, the tenability of results from

either the GzLM or log transformed model depends on the degree to which assumptions

about normality and heteroscedasticity are met. Methods for evaluating assumptions about

the residuals include graphical inspection or formal assumptions tests, such as the

Shapiro-Wilk (1965) for normality or the Brown-Forsythe (1974) for homoscedasticity. The

Shapiro-Wilk test behaves favourably in a variety of contaminated distributions (Chen,

1971) and has more power compared to alternatives (Razali & Wah, 2011). The

Brown-Forsythe is a robust form of the original Levene test (1960) and has been used

across many disciplines for exploring trends in variances (Gastwirth, Gel, & Miao, 2009).

The preliminary use of formal assumptions tests for choosing among statistical methods,

however, generally has deleterious effects on error rates of the final hypothesis of interest

because error rates compound and interact across stages of tests (García-Pérez, 2012;

Hayes & Cai, 2007; Zimmerman, 2004). Graphical inspection may be considered a suitable

alternative (Schucany & Ng, 2006) but is still considered a preliminary analysis if it serves

as a condition upon which statistical decisions are made (García-Pérez, 2012). However, the

use of preliminary assumptions checks for determining subsequent analysis steps is different

from the use of assumptions checks for evaluating the tenability of statistical conclusions.

GzLMs for determining group mean differences. We focus on GzLMs for the

one-way independent groups design. While misspecification of the family distribution

inflates standard errors (Jones, 2012), the link function becomes less relevant for model fit,
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with a single categorical predictor. With k groups, there would be only k unique expected

values. For two models with only one categorical predictor that share the same family but

not the same link function, equivalent model fit would be obtained because the total

deviance would be the same. For example, a gamma GzLM with log link yields the same fit

as a gamma GzLM with inverse link when there is a single categorical predictor. Similarly,

a Gaussian GzLM with log link yields the same fit as a regular ANOVA. In this setting,

then, the link function serves only to provide different model interpretations but not

statistical fit. Beyond this setting, however, different family and link specifications require

model comparison and evaluation, which may involve inspection of deviance residuals,

goodness-of-fit tests, and comparison of information criteria.

Research Objective

Previous studies have compared log transformations with the gamma GzLM with log

link (Manning et al., 2001; Neal & Simons, 2007; Nevill & Copas, 1991), but to our

knowledge, GzLMs have not been compared to robust estimators like the Yuen-Welch’s.

We compare the Yuen-Welch test, the log transformation, and the GzLM (gamma family

with log link; Gaussian family with log link) for the one-way independent groups design.

With the context that some researchers may prefer both power and inference about the

arithmetic mean in original scale, we compared these four methods for Type I error and

power, as well as the discrepancy of the alternative estimators (the geometric and trimmed

means) from the expected arithmetic mean. Assumptions tests are used to inspect

residuals within the simulation and to document residual behaviour across data conditions.

Method

Monte Carlo simulations were conducted in R Software (R Development Core Team,

2015). Data with variances increasing proportionately with the mean were generated from

gamma and Box-Cox transformation processes.
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Data generation

Two sets of expected value configurations were used for power, one set of locations

being low and another being high, such that there was a shift in location (one unit or three

units) for group two. Thus, the expected mean configurations for power settings were the

following: [2, 3, 2], [10, 11, 10], [2, 5, 2], and [10, 13, 10]. For Type I error conditions, mean

configurations were [2, 2, 2] and [10, 10, 10].

For the Box-Cox data, the power parameter of λ varied (λ: 0, 0.2, 0.4, or 0.6). In the

transformed scale, we compared an equal variances condition (σ2 = 0.10, for all groups) to

unequal variances (σ2
1 = σ2

3 = 0.10 and σ2
2 = 0.20).

For the gamma-distributed data, the parameter α varied (α = 0.5, 1, 1.5, 2, or 2.5).

Increasing α corresponds to decreasing skewness. The scale s parameter was held constant.

When α is less or equal to 1, the distribution is monotonically declining; for αs above 1,

the distribution is bell-shaped and positively skewed.

We used equal sample sizes (n = 40 per group) and two sets of unequal sample sizes

(n1= 30, n2 = 60, n3= 30 and n1 = 50, n2= 20, n3 = 50). Because the higher location in

group two corresponds to greater variance, the first set of unequal sample sizes is a

positively paired unequal sample size condition (i.e., higher variance is weighted by a larger

group sample size), while the second set is a negatively paired unequal sample size

condition.

Evaluation

Each estimator was evaluated on 5000 replicates.The gamma with log link

(GammaLog), the Gaussian with log link (GaussianLog), log transformation on the raw

response (LogDV), and the Yuen-Welch test (YW) were applied to each of the replicates.

The models (i.e., GammaLog, GaussianLog, and LogDV) treated Group 1 as the referent

group. For example, in raw scale via the inverse link function, the expected response given

by the GzLMs with log link is:
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E (Y ) = exp (β0 + β1 (x1 = Group 2) + β2 (x2 = Group 3)) . (9)

The models’ deviance residuals were evaluated by two diagnostic tests, the

Shapiro-Wilk (1965) and the Brown-Forsythe (1974), for descriptive purposes; these tests

did not inform method selection, as all estimators were each evaluated on 5000 replicates.

Power rates were reported unconditionally (significant F -test) and conditionally

(significant on F -test and nonsignificant on diagnostic tests). A conditional power rate is

therefore the probability of detecting a true effect when there is no evidence of assumption

violations. The significance level was .05, and empirical Type I error rates were considered

acceptable with liberal bounds of .025 and .075 (Bradley, 1978). Type I error rates were

also reported unconditionally (false positive without diagnostic tests) and conditionally

(false positive and nonsignificant diagnostic tests).

Results

Tables 1 and 2 show descriptive statistics for the response in original scale. Standard

deviations, skewness, and kurtosis values increased with decreases in α for

gamma-distributed data and with decreases in λ for the Box-Cox data.

Power and Type I error trends were similar across sample size conditions, except for

Type I errors on the Box-Cox data. The GammaLog and GaussianLog models yielded

unbiased estimates of population means. The trimmed means and unadjusted,

back-transformed values were systematically lower than the population arithmetic mean.

The discrepancy from the arithmetic mean for the YW was generally less than that of

LogDV.

Gamma-distributed data

Type I error and power. All unconditional (without diagnostics) Type I error

rates were nearly nominal. Conditional (with diagnostics) Type I error rates were overly
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conservative for the LogDV and GaussianLog but still nearly nominal for the GammaLog

(Table 3).

The GammaLog had more power than the LogDV. At low locations, the GammaLog

advantage ranged 24 to 89 percentage points (pp); at high locations, the advantage ranged

7 to 31 pp (Figure 1). Across conditions, median decrease in power due to diagnostics was

3 pp for the GammaLog, 22 pp for LogDV, and 38 pp for GaussianLog. Table 4 shows that

the rates at which both diagnostic tests were simultaneously passed by the GammaLog and

LogDV did not differ between the effect sizes. Without diagnostics, however, the models

generally had advantage over the YW, especially the GammaLog at lower αs.

Discrepancy from the arithmetic mean. Discrepancies for the LogDV and YW

were stronger with lower α and with higher locations (Figure 2). Across conditions, the

LogDV discrepancy ranged from −0.56 to −9.13, and the trimmed mean discrepancy

ranged from −0.29 to −5.25.

Box-Cox Data

Type I error and power.

Type I error rates (equal variances in transformed scale). The models had adequate

unconditional and conditional Type I error rates across all sample size conditions.

Type I error rates (unequal variances in transformed scale). Without diagnostics,

the model-based estimators were slightly liberal in equal sample size conditions (Table 5),

slightly conservative in the positively paired sample sizes condition (Table 6), and overly

liberal in the negatively paired sample sizes condition (Table 7). With diagnostics,

conditional Type I error rates were near zero across all sample size conditions.

Conditional power (equal variances in transformed scale). Tables 8 and 9 show

diagnostic test behaviour for effect sizes 1 and 3, respectively. With the lower effect size,

the LogDV had a trivial advantage over the GammaLog at λ = 0. The GaussianLog

increased in power with increased λ and surpassed the GammaLog and LogDV above λ ~
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0.50; this corresponded with the increasing rates for the diagnostic tests, as well as

distributions that were increasingly normalized. As λ increased, power for the LogDV and

GammaLog decreased; the extent of these decreases was more pronounced with the larger

effect size and can be explained by the failure to pass the Brown-Forsythe test.

Conditional power (unequal variances in transformed scale). With the larger effect

size, however, power for LogDV and GammaLog increased. At λ = 0, for which the log

transformation would have been most suitable, power was essentially nil when variances

were unequal in transformed space (Figure 3), which corresponded to the low rates at

which the Brown-Forsythe test was passed. Similarly, even with more normal distributions

at higher λ, the GaussianLog almost always failed the Brown-Forsythe.

Unconditional power. Without diagnostics, unconditional power for the GammaLog

was superior to the YW on all conditions. Across the four conditions where YW’s power

was below 80% (unequal variances, high location, λ near zero), the GammaLog and LogDV

had 12 to 33 pp more power than the YW. The reduction in power due to diagnostic tests

was greater in unequal variance conditions; while median reduction in power was 11 pp for

both GammaLog and LogDV and 29 pp for GaussianLog in equal variance conditions,

median reduction was 91 pp for both GammaLog and LogDV and 100 pp for GaussianLog

in unequal variance conditions.

Discrepancy from the arithmetic mean. Discrepancy was consistently near

zero for the GammaLog and GaussianLog but increased slightly for LogDV and YW with

higher skewness (i.e., lower λ), higher locations, and higher effect sizes. Discrepancies were

also slightly more pronounced with unequal variances (Figure 4), though magnitudes were

not as large as those in the gamma setting.

Discussion

We compared the GzLM, the log transformation, and the Yuen-Welch test with

gamma-distributed and Box-Cox data for their abilities to detect group mean differences
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when data exhibit non-normality and heteroscedasticity and for their discrepancies from

the arithmetic mean.

For positive skewness and variances that are proportional to means, two estimators

that retain all relevant data are the LogDV model and the gamma model. For the Box-Cox

data, both had similar rates for power and diagnostic tests, but the LogDV did not show

clear superiority in power compared to the GammaLog. For the gamma-distributed data,

the LogDV tended to have significant departures from normality. Overall, although both

models generally follow the same trends, there is a greater power disadvantage when

applying the LogDV to gamma-distributed data than there is when applying the

GammaLog to the Box-Cox data. Further, when the GammaLog Even when λ = 0 for the

tested conditions, for which the log raw data transformation would be ideal, the LogDV

advantage was only slight when error variances were equal in transformed scale. For

situations in which the natural logarithmic transformation is viable, the gamma GzLM

may also be considered. Certainly, this depends on the data situation; previous simulations

have shown that the gamma model suffers from inefficiency, more so than the

log-transformed model, when there is kurtosis in transformed scale (Manning et al., 2001).

For both these models, the state of error variances in transformed space is important

to note, along with the mean-variance relation concept. These were demonstrated by the

condition of unequal variances in transformed space for the Box-Cox data. Though results

were stated as relations to increasing and decreasing λ values, it is not exactly the λ

parameter that matters. Consider λ = 0 . When variances were equal, models with either

the log-transformed response (LogDV) or the gamma family (GammaLog) worked well

because linearity could be achieved. When variances were unequal, both failed.

Transformations do not always guarantee linearization, and GzLMs do not always fit if the

mean-variance relation is not approximated. It is not simply the presence or magnitude of

skewness and heteroscedasticity that determines whether one should use the GzLM but

rather the presence of some mean-variance relation.
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Our simulation used null hypothesis tests as proxies for the inspection of model

residuals, leading to the contrast between unconditional and conditional error rates. The

reduction in power due to assumptions tests was drastic when assumptions were not

approximated well, and they were smaller when assumptions could be somewhat met (e.g.,

the GammaLog’s rates were reduced by 3 pp under gamma-generated data and by 11 pp in

some Box-Cox data). Still, a logical limitation of interpreting conditional error rates on

their own is the assumption of tests’ results corresponding to researchers’ judgments on the

severity of violations. As sample size increases, these tests have increased power for

detecting even minute departures, though researchers may consider such departures less

consequential. Even if formal tests are used in practice, stringency could be imposed with a

more logically-aligned equivalence test, such as one for detecting evidence of

homoscedasticity (Kim & Cribbie, 2017; Mara & Cribbie, 2017) or with conservative alpha

levels (Schucany & Ng, 2006). In practice, we recommend neither reliance on assumptions

tests nor conditional approaches for method selection. We do recommend researchers to

consider alternative frameworks and to do due diligence by inspecting assumptions, be it

graphically or visually, for critically evaluating conclusions.

The YW with 20% trimmed means is an alternative that requires no assumption

evaluation and that has adequate properties across many distributions and sample size

configurations. When lower sample sizes are paired with higher variance and when errors

are unequal in transformed space, the YW maintains (unconditional) Type I error rates

where parametric alternatives are not suitable. Its inference to the trimmed population

does, however, reduce generalizability. When distributions are approximately symmetrical,

as with higher λ and α values, the trimmed mean is only slightly discrepant from the

arithmetic mean. When population distributions are more asymmetric, the 20% trimmed

mean is more discrepant; the inference to the bulk of the population has no implied

representation for potentially meaningful distribution tails, thereby lowering

generalizability. The YW is a valuable alternative, but researchers should be cognizant of
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generalizability and that there may be situations where it is statistically and substantively

worthwhile to determine whether a parametric option is viable.

Overall, the choice of alternative frameworks involves substantive and data

considerations asides from power. The growing awareness and application of robust

statistics is greatly beneficial, but one should not simply default to robust approaches just

because nonnormality and heteroscedasticity are present. Similarly, just because skewness

and heteroscedasticity can be modeled using the gamma GzLM (or a model with log

transformation) does not mean that the assumed nature of heteroscedasticity is actually

tenable. It is not necessarily the case that the psychological data of interest are truly

generated from gamma processes (just as data are likely not truly generated from Gaussian

processes), and therefore, it may also not be the case that a gamma model would be ideal

across as many scenarios as the YW. The log model and gamma GzLM have similar trends;

with the popular use of natural log transformations in psychology, there may be many

scenarios in which the gamma GzLM could serve well. If a GzLM is tenable, then one

obtains unbiased inferences about the population mean, estimator sufficiency, and

potentially, higher power for detecting effects. We encourage researchers who desire not

only power but also interpretation about population means to consider and evaluate the

tenability of parametric options before or alongside robust alternatives.
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Table 1

Descriptive statistics for gamma-distributed data

SD Skew Kurtosis

Locations α G1 G2 G3 G1 G2 G3 G1 G2 G3

Low 0.5 2.64 3.92 2.63 1.97 2.00 1.98 6.65 6.77 6.74

1 1.91 2.89 1.91 1.48 1.46 1.48 4.86 4.80 4.85

1.5 1.59 2.37 1.58 1.24 1.22 1.22 4.19 4.15 4.14

2 1.38 2.06 1.38 1.07 1.09 1.09 3.79 3.80 3.81

2.5 1.23 1.85 1.23 0.96 0.97 0.98 3.56 3.56 3.59

High 0.5 13.20 14.43 13.15 1.98 1.98 1.98 6.67 6.69 6.66

1 9.61 10.52 9.58 1.47 1.48 1.48 4.86 4.87 4.89

1.5 7.93 8.65 7.89 1.22 1.21 1.23 4.11 4.09 4.18

2 6.86 7.58 6.86 1.08 1.09 1.07 3.77 3.81 3.78

2.5 6.18 6.77 6.17 0.97 0.96 0.98 3.54 3.54 3.59
Note. G1-G3 refers to the three groups. α = shape parameter of the gamma distribution.

SD = standard deviation. For brevity, descriptives are shown for the effect size of 1 and for

equal sample sizes.
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Table 2

Descriptive statistics for Box-Cox data

SD Skew Kurtosis

Locations Variances λ G1 G2 G3 G1 G2 G3 G1 G2 G3

Low Equal 0 0.20 0.30 0.20 0.24 0.24 0.24 2.76 2.77 2.80

0.2 0.17 0.24 0.17 0.16 0.16 0.16 2.74 2.75 2.74

0.4 0.15 0.19 0.15 0.10 0.09 0.10 2.73 2.73 2.74

0.6 0.13 0.15 0.13 0.06 0.04 0.06 2.73 2.72 2.75

Unequal 0 0.20 0.61 0.20 0.23 0.47 0.24 2.77 2.93 2.78

0.2 0.17 0.48 0.17 0.17 0.30 0.17 2.75 2.79 2.74

0.4 0.15 0.38 0.15 0.11 0.19 0.11 2.74 2.74 2.73

0.6 0.13 0.31 0.13 0.05 0.10 0.06 2.74 2.72 2.73

High Equal 0 0.99 1.10 1.00 0.24 0.24 0.25 2.78 2.78 2.79

0.2 0.63 0.68 0.63 0.13 0.10 0.12 2.74 2.74 2.73

0.4 0.39 0.42 0.39 0.05 0.05 0.07 2.73 2.74 2.72

0.6 0.25 0.26 0.25 0.03 0.03 0.02 2.73 2.73 2.73

Unequal 0 1.00 2.23 1.00 0.24 0.47 0.23 2.76 2.92 2.78

0.2 0.63 1.36 0.63 0.12 0.24 0.12 2.75 2.78 2.74

0.4 0.39 0.84 0.40 0.05 0.11 0.05 2.73 2.74 2.73

0.6 0.25 0.52 0.25 0.01 0.05 0.01 2.74 2.73 2.73
Note. G1-G3 refers to the three groups. λ = power parameter. SD = standard deviation.

The (un)equal variances are in transformed scale. For brevity, descriptives are shown for the

effect size of 1 and for equal sample sizes.
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Table 3

Type I error rates for gamma-distributed data

Without diagnostics With diagnostics

Locations Shapes YW GammaLog LogDV GaussianLog GammaLog Pass LogDV Pass GaussianLog Pass

Low (2, 2, 2) 0.5 .04 .06 .05 .04 .06 4711 .00 5 .00 0

1 .05 .06 .05 .05 .05 4663 .00 146 .00 0

1.5 .05 .06 .05 .05 .05 4626 .01 568 .00 0

2 .05 .05 .05 .05 .05 4602 .01 982 .00 1

2.5 .05 .06 .06 .05 .05 4611 .02 1493 .00 1

High (10, 10, 10) 0.5 .05 .06 .05 .04 .06 4694 .00 4 .00 0

1 .05 .06 .05 .05 .05 4649 .00 166 .00 0

1.5 .05 .05 .04 .04 .05 4637 .01 576 .00 0

2 .05 .05 .05 .05 .05 4597 .01 1041 .00 0

2.5 .06 .06 .05 .05 .05 4592 .02 1469 .00 4

Note. YW = Yuen-Welch test. GammaLog = gamma model with log link. LogDV =

log transformed model. GaussianLog = Gaussian model with log link. Unconditional rates

are obtained without diagnostics tests. Conditional rates are obtained with nonsignificant

results on diagnostic tests. ’Pass’ columns indicate the number of replicates (out of 5000)

that passed both diagnostics tests. Trends were similar for the unequal sample sizes.
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Table 4

Rates of passing diagnostics tests for gamma-distributed data, in power conditions

Effect size 1

Pass Shapiro-Wilk only Pass Brown-Forsythe only Pass both

Locations Shapes GammaLog LogDV GaussianLog GammaLog LogDV GaussianLog GammaLog LogDV GaussianLog

Low (2, 3, 2) 0.5 .95 .00 .00 .99 .96 .79 .94 .00 .00

1 .96 .04 .00 .98 .96 .64 .94 .03 .00

1.5 .96 .12 .00 .97 .96 .57 .93 .11 .00

2 .95 .23 .00 .97 .95 .53 .92 .21 .00

2.5 .95 .33 .01 .97 .96 .50 .92 .31 .00

High (10, 11, 10) 0.5 .95 .00 .00 .99 .95 .95 .94 .00 .00

1 .96 .03 .00 .97 .95 .95 .93 .03 .00

1.5 .96 .11 .00 .97 .95 .93 .92 .10 .00

2 .96 .22 .00 .97 .96 .94 .92 .20 .00

2.5 .95 .32 .00 .97 .96 .94 .92 .30 .00

Effect size 3

Pass Shapiro-Wilk only Pass Brown-Forsythe only Pass both

Locations Shapes GammaLog LogDV GaussianLog GammaLog LogDV GaussianLog GammaLog LogDV GaussianLog

Low (2, 5, 2) 0.5 .95 .00 .00 .99 .95 .18 .94 .00 .00

1 .96 .04 .00 .97 .95 .04 .93 .03 .00

1.5 .96 .12 .00 .97 .96 .01 .93 .11 .00

2 .96 .23 .00 .97 .96 .01 .93 .22 .00

2.5 .95 .31 .01 .96 .95 .01 .92 .29 .00

High (10, 13, 10) 0.5 .95 .00 .00 .99 .95 .89 .94 .00 .00

1 .96 .04 .00 .98 .96 .84 .93 .03 .00

1.5 .95 .12 .00 .97 .96 .80 .92 .11 .00

2 .95 .22 .00 .97 .96 .78 .93 .21 .00

2.5 .95 .33 .00 .96 .95 .77 .92 .31 .00

Note. GammaLog = gamma model with log link. LogDV = log transformed model. Gaus-

sianLog = Gaussian model with log link. The third set of columns, ’Pass both’, indicates

the proportion of replicates that passed both diagnostics tests. Trends were similar for the

unequal sample sizes.
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Table 5

Type I error rates for Box-Cox data, with equal sample sizes.

Without diagnostics With diagnostics

Locations Variances λ YW GammaLog LogDV GaussianLog GammaLog Pass LogDV Pass GaussianLog Pass

Low (2, 2, 2) Equal 0 .04 .05 .05 .05 .04 4669 .04 4730 .04 4042

0.2 .05 .05 .05 .05 .05 4756 .05 4730 .04 4408

0.4 .05 .05 .05 .05 .05 4743 .04 4673 .05 4594

0.6 .05 .05 .05 .05 .05 4714 .04 4608 .04 4684

Unequal 0 .05 .08 .06 .08 .00 2546 .00 2563 .00 1619

0.2 .05 .08 .06 .07 .00 2593 .00 2503 .00 2087

0.4 .05 .06 .06 .06 .00 2548 .00 2430 .00 2367

0.6 .05 .07 .07 .07 .00 2423 .00 2273 .00 2471

High (10, 10, 10) Equal 0 .05 .05 .05 .05 .05 4662 .05 4755 .04 3977

0.2 .05 .05 .05 .05 .04 4723 .04 4735 .04 4579

0.4 .05 .05 .05 .06 .05 4762 .05 4744 .05 4723

0.6 .05 .06 .05 .06 .05 4726 .05 4719 .05 4729

Unequal 0 .05 .08 .06 .08 .00 2529 .00 2587 .00 1660

0.2 .05 .06 .06 .06 .00 2591 .00 2549 .00 2295

0.4 .05 .06 .06 .06 .00 2559 .00 2523 .00 2522

0.6 .05 .06 .06 .06 .00 2526 .00 2501 .00 2554

Note. YW = Yuen-Welch test. GammaLog = gamma model with log link. LogDV = log

transformed model. GaussianLog = Gaussian model with log link. λ = power parameter.

Unconditional rates are obtained without diagnostics tests. Conditional rates are obtained

with nonsignificant results on diagnostic tests. ’Pass’ columns indicate the number of repli-

cates (out of 5000) that passed both diagnostics tests.
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Table 6

Type I error rates for Box-Cox data, with positively paired unequal sample sizes.

Without diagnostics With diagnostics

Locations Variances λ YW GammaLog LogDV GaussianLog GammaLog Pass LogDV Pass GaussianLog Pass

Low (2, 2, 2) Equal 0 .05 .05 .05 .05 .05 4512 .05 4562 .04 4053

0.2 .05 .05 .05 .05 .05 4595 .05 4582 .04 4357

0.4 .05 .05 .05 .05 .04 4551 .04 4518 .04 4439

0.6 .06 .05 .05 .05 .05 4566 .05 4515 .05 4542

Unequal 0 .05 .03 .02 .02 .00 247 .00 249 .00 190

0.2 .06 .03 .02 .03 .00 282 .00 270 .00 245

0.4 .05 .02 .02 .02 .00 287 .00 269 .00 274

0.6 .05 .02 .02 .02 .00 261 .00 254 .00 253

High (10, 10, 10) Equal 0 .05 .05 .05 .05 .05 4529 .04 4555 .04 4106

0.2 .06 .05 .05 .05 .05 4543 .05 4547 .05 4430

0.4 .06 .06 .06 .06 .05 4590 .05 4584 .05 4584

0.6 .05 .05 .05 .05 .05 4589 .05 4572 .05 4592

Unequal 0 .06 .03 .02 .03 .00 261 .00 265 .00 198

0.2 .05 .03 .02 .02 .00 253 .00 243 .00 246

0.4 .05 .02 .02 .02 .00 246 .00 241 .00 239

0.6 .05 .02 .02 .02 .00 252 .00 252 .00 252

Note. YW = Yuen-Welch test. GammaLog = gamma model with log link. LogDV = log

transformed model. GaussianLog = Gaussian model with log link. λ = power parameter.

Unconditional rates are obtained without diagnostics tests. Conditional rates are obtained

with nonsignificant results on diagnostic tests. ’Pass’ columns indicate the number of repli-

cates (out of 5000) that passed both diagnostics tests.
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Table 7

Type I error rates for Box-Cox data, with negatively paired unequal sample sizes.

Without diagnostics With diagnostics

Locations Variances λ YW GammaLog LogDV GaussianLog GammaLog Pass LogDV Pass GaussianLog Pass

Low (2, 2, 2) Equal 0 .05 .05 .05 .05 .05 917 .05 913 .04 843

0.2 .05 .04 .04 .04 .04 909 .04 903 .03 890

0.4 .04 .05 .05 .04 .04 916 .04 893 .04 915

0.6 .05 .04 .04 .04 .04 906 .04 915 .04 769

Unequal 0 .06 .16 .15 .16 .01 76 .01 72 .01 67

0.2 .05 .16 .14 .16 .01 75 .01 76 .01 79

0.4 .08 .17 .17 .17 .01 74 .01 73 .02 77

0.6 .06 .15 .16 .15 .02 100 .02 95 .02 100

High (10, 10, 10) Equal 0 .06 .05 .05 .05 .05 893 .05 910 .04 778

0.2 .06 .05 .05 .05 .05 920 .05 919 .04 885

0.4 .06 .05 .05 .05 .05 926 .05 926 .05 915

0.6 .05 .05 .05 .05 .04 912 .04 911 .04 916

Unequal 0 .06 .17 .14 .16 .02 87 .02 86 .01 66

0.2 .05 .14 .13 .14 .01 97 .01 92 .01 92

0.4 .06 .12 .12 .13 .01 93 .01 93 .01 85

0.6 .04 .13 .13 .13 .02 83 .02 83 .01 77

Note. YW = Yuen-Welch test. GammaLog = gamma model with log link. LogDV = log

transformed model. GaussianLog = Gaussian model with log link. λ = power parameter.

Unconditional rates are obtained without diagnostics tests. Conditional rates are obtained

with nonsignificant results on diagnostic tests. ’Pass’ columns indicate the number of repli-

cates (out of 5000) that passed both diagnostics tests.
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Table 8

Rates of passing diagnostics tests for Box-Cox data, in power condition (effect size 1)

Pass Shapiro-Wilk only Pass Brown-Forsythe only Pass both

Locations Variances λ GammaLog LogDV GaussianLog GammaLog LogDV GaussianLog GammaLog LogDV GaussianLog

Low (2, 3, 2) Equal 0 .93 .95 .72 .95 .95 .35 .89 .90 .26

0.2 .95 .94 .85 .94 .94 .54 .89 .89 .46

0.4 .95 .94 .91 .87 .88 .73 .83 .82 .66

0.6 .93 .92 .94 .76 .76 .87 .71 .70 .82

Unequal 0 .48 .48 .03 .02 .02 .00 .01 .01 .00

0.2 .63 .61 .06 .05 .05 .00 .03 .03 .00

0.4 .74 .71 .14 .12 .12 .00 .10 .10 .00

0.6 .83 .79 .25 .25 .25 .00 .21 .20 .00

High (10, 11, 10) Equal 0 .93 .95 .80 .95 .95 .93 .89 .91 .74

0.2 .95 .95 .92 .96 .96 .94 .91 .91 .86

0.4 .95 .94 .94 .96 .96 .95 .91 .90 .90

0.6 .95 .95 .95 .95 .95 .95 .90 .90 .90

Unequal 0 .50 .50 .23 .02 .02 .00 .01 .01 .00

0.2 .54 .53 .34 .02 .02 .01 .02 .02 .00

0.4 .58 .57 .41 .03 .03 .01 .02 .02 .01

0.6 .60 .60 .45 .04 .04 .01 .03 .03 .01

Note. GammaLog = gamma model with log link. LogDV = log transformed model. Gaus-

sianLog = Gaussian model with log link. λ = power parameter. The third set of columns,

’Pass both’, indicates the proportion of replicates that passed both diagnostics tests. Trends

were similar for the unequal sample sizes.
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Table 9

Rates of passing diagnostics tests for Box-Cox data, in power condition (effect size 3)

Pass Shapiro-Wilk only Pass Brown-Forsythe only Pass both

Locations Variances λ GammaLog LogDV GaussianLog GammaLog LogDV GaussianLog GammaLog LogDV GaussianLog

Low (2, 5, 2) Equal 0 .94 .95 .14 .96 .96 .00 .90 .91 .00

0.2 .95 .95 .42 .85 .85 .01 .81 .80 .00

0.4 .92 .91 .71 .50 .50 .10 .45 .45 .08

0.6 .86 .85 .87 .13 .13 .43 .11 .11 .39

Unequal 0 .48 .48 .00 .02 .02 .00 .01 .01 .00

0.2 .77 .75 .00 .14 .14 .00 .12 .11 .00

0.4 .90 .89 .00 .53 .53 .00 .48 .48 .00

0.6 .94 .92 .06 .89 .89 .00 .83 .81 .00

High (10, 13, 10) Equal 0 .94 .95 .78 .96 .96 .70 .90 .91 .54

0.2 .95 .95 .91 .94 .94 .80 .90 .90 .73

0.4 .95 .95 .94 .92 .92 .87 .88 .88 .82

0.6 .95 .94 .95 .89 .89 .92 .84 .84 .87

Unequal 0 .48 .48 .08 .01 .01 .00 .01 .01 .00

0.2 .59 .58 .17 .03 .03 .00 .02 .02 .00

0.4 .68 .68 .26 .07 .07 .00 .06 .06 .00

0.6 .73 .73 .33 .11 .11 .00 .09 .09 .00

Note. GammaLog = gamma model with log link. LogDV = log transformed model. Gaus-

sianLog = Gaussian model with log link. λ = power parameter. The third set of columns,

’Pass both’, indicates the proportion of replicates that passed both diagnostics tests. The

unequal sample size conditions are excluded because trends were similar.
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Figure 1 . Power rates accounting for diagnostic tests, for gamma-distributed data. ’Low’

and ’High’ refers to location conditions. GammaLog = gamma model with log link. LogDV

= log transformed model. GaussianLog = Gaussian model with log link. Shape refers to

the gamma distribution parameter (α). ’1’ and ’3’ refers to effect size conditions. The

unequal sample size conditions are excluded because trends were similar.
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Figure 2 . Discrepancy from the arithmetic mean, for gamma-distributed data. GammaLog

= gamma model with log link. LogDV = log transformed model. GaussianLog = Gaussian

model with log link. Shape refers to the gamma distribution parameter (α). ’Low’ and

’High’ refers to location conditions. ’1’ and ’3’ refers to effect size conditions. The

geometric and trimmed means are more discrepant from the arithmetic mean for lower

shapes, higher locations, and larger effect sizes. For brevity, only discrepancies for Group 2

are shown.
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Figure 3 . Power accounting for diagnostic tests, for Box-Cox data. GammaLog = gamma

model with log link. LogDV = log transformed model. GaussianLog = Gaussian model

with log link. Lambda is the power parameter (λ). Panel (a) shows the equal variances

condition while panel (b) shows the unequal variances condition. ’Low’ and ’High’ refers to

location conditions. ’1’ and ’3’ refers to effect size conditions. The unequal sample size

conditions are excluded because trends were similar.
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Figure 4 . Discrepancy from the arithmetic mean, for Box Cox data. GammaLog = gamma

model with log link. LogDV = log transformed model. GaussianLog = Gaussian model

with log link. Lambda is the power parameter (λ). Panel (a) shows the equal variances

condition while panel (b) show the unequal variances condition. Note the differences in

scale for the panels’ y-axies. ’Low’ and ’High’ refers to location conditions. ’1’ and ’3’

refers to effect size conditions. Geometric and trimmed means are more discrepant from

the arithmetic mean with lower power parameters and the higher location. For brevity,

only discrepancies for Group 2 are shown.


