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Comparing Means under Heteroscedasticity and Nonnormality: 

Further Exploring Robust Means Modeling  

 The traditional independent samples analysis of variance (ANOVA) is a popular statistical 

analysis in psychology because researchers commonly seek to examine mean differences across multiple 

groups. Like all parametric statistical tests, certain assumptions must be met to validly interpret the results 

of the traditional ANOVA, namely independence of observations, normality of population distributions, 

and equal population variances. While the assumption of independence is an issue at the research design 

level, normality and equal variance are important statistical assumptions that researchers should always 

examine when conducting their ANOVA.  

 Research suggests that the aforementioned assumptions are rarely satisfied with the types of data 

typically collected within psychology and other social science fields (Blanca, Arnau, Lopez-Montiel, 

Bono, & Bendayan, 2011; Golinski & Cribbie, 2009; Keselman et al., 1998, Micceri, 1989; Wilcox, 

1990a, 1990b). In fact, researchers continue to adopt more traditional approaches despite a wealth of 

research highlighting that the Type I error rates and power of the ANOVA are affected by violating 

assumptions (e.g., Boneau, 1960; Glass, Peckham, & Sanders, 1972), despite the availability of improved 

methods for comparing central tendencies under these circumstances (e.g., Cribbie, Fiksenbaum, Wilcox, 

& Keselman, 2012; Keselman, Algina, Lix, Wilcox, 1995, 2017; Keselman, Algina, Wilcox, & Deering, 

2008). Recent research further suggests that few researchers examine these assumptions at all (Hoekstra, 

Kiers, & Johnson, 2012).  

 Assumption violation may result in inaccurate interpretations of true population differences for 

the traditional ANOVA procedure. For example, when one population’s variance is much higher than 

another, especially with unequal sample sizes, the empirical probability of Type I errors deviates from the 

nominal level (Box, 1954, Brown & Forsythe, 1974a, 1974b; Wilcox, 1988). The manner in which Type I 

error rates are affected depends on the pairing of sample size and variance heterogeneity. Specifically, 

when small sample sizes are paired with large variance (i.e., negative/inverse pairing), empirical Type I 

error rates will be inflated relative to the nominal 𝛼, whereas when large sample sizes are paired with 
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large variance (i.e., positive/direct pairing), Type I error rates tend to be too conservative. In instances 

where the homogeneity of variance assumption has been met, deviations from normality tend to have little 

effect on the Type I error rates of the traditional ANOVA, but often decrease the statistical power 

(Harwell, Rubinstein, Hayes, & Olds, 1992; Lix, Keselman, & Keselman, 1996). When population 

variances are unequal and distributions are nonnormal, empirical Type I error rates are extremely aberrant 

(Cribbie et al., 2012).  

Trimmed Welch Test with Winsorized Variances 

 Due to the routine violation of assumptions in psychological research, many researchers have 

proposed alternatives to the omnibus ANOVA F test. One method that has been found to maintain 

accurate Type I error control and retain power under variance heterogeneity and nonnormality is to use 

trimmed means and Winsorized variances in combination with a test that uses a non-pooled standard error 

and adjusted degrees of freedom (trimmed Welch; e.g., Cribbie et al., 2012; Keselman, Kowalchuk, & Lix, 

1998; Keselman, Algina, Wilcox, & Kowalchuk, 2000; Keselman et al., 2008; Wilcox, Keselman, Muska, 

& Cribbie, 2000). The trimmed Welch test has been found to perform well even with extremely 

nonnormal distributions and disparate sample sizes and variances. Details on this test statistic are given 

below. 

 Let the effective sample size (i.e., the sample size after trimming), be h = N - 2λ where λ = [κn], 

when κ is the proportion of trimming from each tail and [κn] is the largest integer ≤ κn. Then, the sample 

trimmed mean is: 

𝑋�𝑡 =  
1
ℎ
� 𝑋𝑖

𝑛−𝜆 

𝑖=𝜆+1

                                                                     (1) 

The sample Winsorized mean is: 

𝑋�𝑊 =  
1
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                                                                      (2) 

where:  
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The sample Winsorized variance is: 

𝑠𝑊2 =
� (𝑌𝑖 − 𝑋�𝑊)2

𝑖
𝑛 − 1

                                                                 (4) 

Let nj, hj, sWj, and 𝑋�tj represent the values of n, h, sW, and 𝑋�t  for the jth group, and let: 

𝑞𝑗 =  
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𝐹𝑡 =
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The null hypothesis when using sample trimmed means is Ho: μt1 = ... = μtJ (i.e., the population trimmed 

means are equal), and is rejected if Ft ≥F α, J-1, νWt, where: 

νWt =
1

3
𝐽2−1

∑
(1−

𝑤𝑗
𝑈 )2

ℎ𝑗−1𝑗

                                                                   (12) 

 Fan and Hancock (2012) note two major criticisms with using a non-pooled standard error test in 

combination with trimming extreme observations. First, researchers may be hesitant to use trimming 

because it involves temporarily removing a portion of their data. Second, the null hypothesis relates to 
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trimmed, not ordinary, population mean differences. Lastly, they argue that Type I error rates and power 

of these techniques may not be satisfactory with larger degrees of nonnormality. The first two criticisms 

hold if researchers are only interested in comparing the full distributions of the populations, however if 

researchers are interested in comparing the ‘bulk’ of the distributions while limiting the effects of outliers 

then these criticisms do not hold. In other words, moving from a traditional null hypothesis (e.g., H0: μ1 = 

μ2) to a robust null hypothesis (e.g., H0: μt1 = μt2, where μt represents the trimmed population mean) has 

little effect on the overall testing strategy (i.e., it simply eliminates the extreme scores from the analysis) 

and is typically preferred when the outlying cases have undue influence on the results of the analyses. 

With regard to the final criticism, the trimmed Welch has been found to be superior to alternative 

procedures when distributions are nonnormal and population variances are unequal (Cribbie et al., 2012). 

These potential limitations led Fan and Hancock to propose a new structural equation modelling (SEM; 

Bollen, 1989) based approach entitled robust means modeling.  

Robust Means Modeling 

 Robust means modeling (RMM; Fan & Hancock, 2012) is a SEM technique inspired by 

Sorbom’s (1974) structured means modeling (SMM). Specifically, it is a special case of SMM where the 

means being compared are observed variables (e.g., an ANOVA model) instead of latent variables (Fan & 

Hancock, 2012). The SMM approach can be represented in matrix form by the following model: 

𝒙 =  𝝊𝒌 + 𝚲𝒌𝝃 + 𝜹                                                                  (13) 

where x is a p x 1 vector of observed indicators of a latent variable, 𝝃; 𝜐𝑘 is a p x 1 vector of intercepts; 

𝚲𝑘 is a p x 1 vector of factor loadings 𝜆; and 𝜹 is a p x 1 vector of errors. The model for RMM is a 

simpler version of the SMM model because there are no latent variables (𝝃) and therefore no factor 

loadings (𝚲𝑘) leaving only: 𝑥 =  𝜐𝑘 + 𝛿 (Fan & Hancock, 2012). The null hypothesis remains H0: 

𝜐1 = 𝜐2 = . . . = 𝜐𝐾, where υ represents the population intercepts/means, but the method for comparing the 

means differs. Specifically, the means are constrained to be equal in the SEM model and the variances are 

free to be estimated, thereby removing the homogeneity of variance assumption. The SMM model can be 
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estimated through a weighted combination of the multi-group maximum likelihood (ML) fit functions: 

𝐹𝑀𝐿 =  ��
𝑛𝑘
𝑁
�

𝐾

𝑘=1

𝐹𝑘�𝑺𝑘 ,𝒎𝑘 ,𝚺�𝑘 ,𝝁�𝑘�                                             (14)   

where 𝑛𝑘 is the sample size of the kth group, N is the total sample size for all groups, 𝑺𝑘 is the kth group’s 

observed covariance matrix, 𝒎𝑘 is the kth group’s observed mean vector, 𝚺�𝑘 is the kth group’s model-

implied covariance matrix, 𝝁�𝑘 is the kth group’s model-implied vector of means and 𝐹𝑘 is the kth group’s 

ML fit function defined as: 

𝐹𝑘 = [ln�𝜮�𝑘�+  𝑡𝑟�𝑺𝑘Σ�𝑘−1� − ln|𝑺𝑘|− 𝑝] + (𝒎𝑘 − 𝝁�𝑘)′Σ�𝑘−1(𝒎𝑘 − 𝝁�𝑘)               (15) 

where p is the number of observed variables (i.e., 1 for RMM).  

 𝐹𝑀𝐿 can be used to calculate a test statistic that quantifies evidence against the null hypothesis of 

mean equality. Specifically 𝑇𝑀𝐿 = (𝑁 − 1)𝐹𝑀𝐿 with degrees of freedom (df) = Kp(p+3)/2 – q, where K is 

the number of groups, p is the number of observed variables, and q is the number of parameters estimated 

for the model (Fan & Hancock, 2012). The only parameters estimated in the RMM model are the K 

population variances plus one population mean (constrained to be equal across the K groups). Therefore 

the df in the RMM model simplifies considerably to K - 1. 𝑇𝑀𝐿 follows a 𝜒2distribution when data are 

normal, but it becomes biased as data become less normally distributed.  

 Although traditional ML estimation requires multivariate normality to produce unbiased results, 

there are a number of modified estimation procedures designed to alleviate issues stemming from 

nonnormality (e.g., Browne, 1984; Satorra & Bentler, 2001; Yuan & Bentler, 1999). For our study we 

chose to test many of the original RMM procedures in Fan and Hancock’s (2012) study. They are 

described below. 

Asymptotically distribution free method (ADF). One of the first modifications to ML is Browne’s 

(1984) ADF method. It is also known as arbitrary generalized least squares (AGLS) or weighted least 

squares (WLS). Unlike traditional ML, the ADF method does not require the multivariate normality 

assumption as a condition for its use. The ADF method is based on the generalized least squares approach, 



Robust Means Modeling vs Traditional Robust Tests     7 
 

but uses a different weight matrix that allows for nonnormal data. It can be written as the following 

weighted fit function for multiple groups: 

𝐹𝐴𝐷𝐹 = �(𝒔𝒌 − 𝝈�𝒌)′𝑊𝑘
−1(𝒔𝒌 − 𝝈�𝑘)

𝐾

𝑘=1

                                              (16) 

where 𝒔𝒌 is the p* x 1 vector of first and second moments of the distribution of observed means, 

variances, and covariances (p* = p(p+3)/2), 𝝈�𝒌 is the p* x 1 vector of model-implied first and second 

moments, and 𝑊𝑘
−1 is a p* x p* weight matrix of higher moments. For more details about the weight 

matrix see Browne (1984) or Muthén (1989). Using the ADF method, one can obtain test statistic 

𝑇𝐴𝐷𝐹 = (𝑁 − 1)𝐹𝐴𝐷𝐹                                                               (17) 

which is distributed as 𝜒2 with K – 1 df. In theory, the ADF method solves estimation issues arising from 

models with nonnormal data, but simulation studies demonstrate that it requires very large sample sizes 

and may be limited in the number of variables in the SEM model to obtain stable estimates for the weight 

matrix (e.g., Curran, West, & Finch, 1996; Finch, West, and MacKinnon, 1997; Muthén, & Kaplan, 1992; 

Olsson, Foss, Troye, & Howell, 2000).  

Modified ADF methods. Given the issues discussed above concerning the ADF method, researchers 

have proposed modifications to correct for estimation issues resulting from small sample sizes. For 

example, Fan and Hancock (2012) recommended two modified ADF methods by Yuan and Bentler 

(1997; 1999). The first statistic (YB1; Yuan & Bentler, 1997) modifies the ADF statistic as follows: 

𝑇𝑌𝐵1 =
𝑇𝐴𝐷𝐹

(1 + 𝑇𝐴𝐷𝐹𝑁−1)                                                            (18) 

The 𝑇𝑌𝐵1 follows a 𝜒2 distribution and has the same df as the ADF model (K-1 for the RMM model). 

 Yuan and Bentler’s (1999) second modified ADF statistic (YB2) follows an F distribution and 

can be expressed by the following equation: 

𝑇𝑌𝐵2 = 𝑇𝐴𝐷𝐹
(𝑁 − (𝐾𝑝∗ − 𝑞))

(𝑁 − 1)(𝐾𝑝∗ − 𝑞)                                               (19) 

with numerator df = Kp*-q and denominator df = N - (Kp*-q). In RMM, the df simplifies to K-1 for the 
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numerator and N - K +1 for the denominator df (Fan & Hancock).  

Scaling corrections to ML. The Satorra-Bentler (SB; Satorra & Bentler, 1988) rescaled test statistic is 

another popular alternative to traditional ML estimation, which was extended to include mean testing 

(Satorra, 1992). The new statistic, 𝑇𝑆𝐵 = 𝑇𝑀𝐿𝑐̂−1 where 𝑐̂−1 is a scaling factor that takes into account the 

model, estimation procedure, and degree of kurtosis. It is approximately distributed as 𝜒2 with the same df 

as 𝑇𝑀𝐿 and includes the use of robust standard errors. For technical details about the scaling constant see 

Satorra (1992) or Satorra and Bentler (2001). The SB rescaled test has been found to perform well in 

general, and better than the ADF methods with smaller sample sizes (e.g., Hu, Bentler, & Kano, 1992; 

Curran, West, & Finch, 1996). Given these options, RMM is a promising method as it includes robust 

estimation techniques to combat issues with nonnormal data and allows for distinct model estimates of 

population variances.  

Performance of the RMM Methods  

 Fan and Hancock (2012) evaluated the performance of several RMM procedures in comparison to 

four modified ANOVA procedures along with the traditional ANOVA F-test as a reference. The 

alternative ANOVA procedures included the Welch test (Welch, 1951), Brown and Forsythe method 

(Brown & Forsythe, 1974c), Alexander-Govern method (Alexander & Govern, 1994), and James’ second 

order test (James, 1951). In Fan and Hancock’s study, trimmed means and Winsorized variances were 

incorporated into each of the four ANOVA alternatives. Under various conditions of nonnormality and 

unequal population variances, Fan and Hancock (2012) found that the RMM procedures outperformed the 

traditional methods and alternatives with regard to Type I error rates and power when moderate to 

extreme amounts of nonnormality were combined with unequal sample sizes and variances. Their study 

reported very liberal Type I error rates for the modified ANOVA tests including the trimmed Welch, and 

due to inaccurate Type I error rates, power results were not reported. It was, however, noted that the 

power of the RMM methods was higher than the ANOVA-based methods, although the power difference 

between the approaches decreased as sample size increased.  

 Fan and Hancock’s (2012) results contrasted with previous research demonstrating that the Welch 
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test with trimmed means and Winsorized variances has accurate Type I error rates and adequate power 

results (e.g., Cribbie et al, 2012; Lix et al., 1996). Fan and Hancock found slight differences in 

performance across the RMM methods, depending on the condition, but overall the pattern of results was 

similar for the procedures. For Type I error rates, the RMM methods all provided good results, only 

deviating substantially from the nominal level in a few conditions. The results were significantly better 

than the ANOVA-based methods. The RMM method with the highest power was Browne’s (1984) ADF 

method, followed by the two Yuan and Bentler (1997; 1999) statistics. Based on the overall performance 

of all of the methods under study, Fan and Hancock recommended the two Yuan and Bentler adjusted 

ADF methods over the ANOVA-based methods and other RMM approaches. 

Study Objectives 

 Given the promising results for RMM procedures, we sought to extend the findings of Fan and 

Hancock (2012) in two ways. First, we simulated data from two different families of nonnormal 

distributions not investigated by Fan and Hancock -- the g and h distribution (Hoaglin, 1985) and the 

𝜒2distribution. We also included results on the performance of the RMM procedures when the 

distribution shapes differed across groups (e.g., one group had positively skewed data, another group had 

normally distributed or negatively skewed data, etc.). Lastly, like Fan and Hancock (2012), we included 

the trimmed Welch because it is widely recommended for comparing population means under 

nonnormality and variance heterogeneity (Cribbie et al., 2012; Wilcox, 2017). The poor performance of 

the trimmed Welch in Fan and Hancock was unexpected and deserves further investigation. The expanded 

conditions of the current paper will allow further comparisons between the trimmed Welch and the RMM 

procedures. 

Methodology 

A Monte Carlo study was constructed to evaluate the performance (i.e., power and Type I error 

rates) of traditional ANOVA-based methods and RMM tests for comparing independent group means 

across many conditions of nonnormality and variance heterogeneity. The ANOVA-based methods 

included the traditional ANOVA (for baseline comparisons only), Welch’s (1951) heteroscedastic 
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procedure with both usual means and variances (Welch) and trimmed means (20% symmetric trimming) 

and Winsorized variances (T Welch). The RMM methods included the traditional maximum-likelihood 

(ML) approach based on a 𝜒2test, a maximum likelihood-based Satorra-Bentler corrected test (SB), the 

asymptotically distribution free (ADF) test, and the two sample-size adjusted ADF methods due to Yuan 

and Bentler (YB1,YB2). The study used the open source software R (R Core Team, 2014). The simulation 

results were organized with the SimDesign package (Chalmers, 2016) and the RMM models were all 

evaluated using lavaan, an R package for the analysis of latent variable models (Rosseel, 2012).  

Several variables were investigated in the simulation study, including the number of groups (K = 

2 or 4), mean pattern (for investigating Type I error rates and power), sample sizes, population 

distribution shapes, and variance heterogeneity. Average group sample sizes included 10, 50 and 200 with 

both equal and unequal sample size conditions. Both equal and unequal variance conditions were included. 

The largest to smallest variance ratio was 16:1, which represents extreme levels of variance heterogeneity 

(Keselman et al., 1998). Two different heterogeneous variance conditions were included, one for a 

positively paired variance and sample size and one with a negatively paired variance and sample size. In 

addition to generating data from the normal (Gaussian) distribution, we simulated data from the 

𝜒2distribution (with 3 df, skewness = 1.64, kurtosis = 4.00 ) and the g and h distribution (Hoaglin, 1985) 

with a positively skewed distribution (g = 1, h = 0, skewness = 6.18, kurtosis = 113.94) and its negatively 

skewed counterpart (g = -1, h = 0). These distributions are expected to represent the moderate (𝜒2) to 

extremely skewed (g/h) distributions that behavioural science researchers would encounter (Wilcox, 

1995). We explored conditions where all groups have the same population distribution shape, as well as 

conditions with mixtures of population distribution shapes (e.g., first population normal and second 

population positively skewed for K = 2).  

In total we explored 420 unique conditions (300 conditions with the g and h distribution and 120 

conditions with the 𝜒2distribution). The specific conditions for the simulation study are presented in 

Table 1 and were selected to match common design conditions in psychological research. To generate 
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pseudo-random normal variates, we used the R generator ‘rnorm’ (R Development Core Team, 2016). If 

Zij is a standard normal variate, then Xij = μj + σjZij is a normal variate with mean equal to μj and standard 

deviation equal to σj. To generate data from a g- and h-distribution, standard unit normal variables (Zij) 

were converted to the random variable: 

𝑋𝑖𝑗 = 𝑒𝑔𝑍𝑖𝑗−1
𝑔

𝑒
ℎ𝑍𝑖𝑗

2

2 , 

where g = 1/-1 and h = 0. To obtain a distribution with standard deviation σj, each Xij was multiplied by a 

value of σj (from Table 1). It is important to note that this does not affect the value of the null hypothesis 

when g = 0 (see Wilcox, 1994). However, when g > 0, the population mean for a g- and h- variable is:    

( )
( )µgh

g
h

g h
e=

−
−











−1
1

1
2

2 1

. 

Thus, for those conditions where g > 0, μgh was first subtracted from Xij before multiplying by σj. When 

working with trimmed means, the proportion of observations trimmed from each tail of the distribution 

was set at .2, and the population trimmed mean for the jth group was also subtracted from the variate 

before multiplying by σj. Lastly, it should be noted that the standard deviation of a g- and h-distribution is 

not equal to one, and thus the values enumerated in Table 1 reflect only the amount that each random 

variable is multiplied by and not the actual values of the standard deviations (see Wilcox, 1994). 

The nominal Type I error rate (α) was set at .05 for all conditions. Finally, 5000 replications were 

conducted for each condition. The code used for running the simulations is available at http://?.? (omitted 

for blind review). 
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Table 1 
Simulation Conditions 

Note: The mean patterns for power conditions were calculated for each of the three sample size conditions 
such that the power would be approximately .80 under normality, equal ns and equal group variance; For 
Type I error rates, the raw population means were zero, but the trimmed population means were used for 
calculating Type I error rates for the trimmed Welch test. 
 
 

Results 
 

 Due to the large number of conditions, only a subset of the results is presented below. 

Specifically, we present the results for the moderate (average n =50) and the large (average n = 200) 

sample size condition with four groups for each of the distribution types. These conditions were chosen to 

highlight any simulation conditions that had an effect on the Type I error rates. The results when K = 2 

mirror those when K = 4. The full simulation results can be obtained from the first author.  

Estimation Issues for the RMM Methods 

 Nonconvergence rates were minimal for RMM models as they converged in over 99.9% of the 

replications across all of the conditions. However, with smaller sample sizes (average n of 10) the ADF 

methods exhibited problems with nonpositive definite matrices in the majority of conditions (rates as high 

as 88%). This was no longer an issue when the average n per group increased to 50 or 200.  

Type I Error Rates 

 The nominal Type I error rate was set at .05 for all investigated conditions and empirical rates 

were considered acceptable if they fell within Bradley’s (1978) liberal bounds (i.e., α +/- .5α). All of the 

tests were found to have accurate Type I error rates when all of the groups’ data follow a normal 

Distributions Normal, g and h distribution (Positive, Negative Skew), 𝜒2  
Dist. Patterns Same Distribution Shape or Different for Half of the Groups  
T1 Mean Pattern All population means = 0  
                       K=2 K=4 
Variance Pattern 1,1 or 1,16 1,1,1,1 or 1,4,9,16 
Avg. n = 10 10,10; 4,16; 16,4 10,10,10,10; 4,8,12,16; 16,12,8,4 
Power Mean Pattern 0, 1.325 0, 0.493, 0.986, 1.479 
Avg n = 50 50,50; 20, 80; 80, 20 50,50,50,50; 20,40,60,80; 80,60,40,20 
Power Mean Pattern 0, .566 0, 0.211, 0.422, 0.633 
Avg. n = 200 200, 200; 80, 320; 320, 80 200,200,200,200; 80,160,240,320; 

320,240,160,80 
Power Mean Pattern 0, .281 0, 0.105, 0.209, 0.314 
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distribution with equal group variance and sample sizes. However, once the groups’ data did not follow a 

normal distribution (e.g., extremely positively or negatively skewed), many of the investigated tests no 

longer demonstrated accurate error rates. The only method found to maintain accurate empirical Type I 

error rates across all of the investigated conditions was the trimmed Welch ANOVA. 

g and h distribution. Tables 2 and 3 display the empirical Type I error rates for each of the tests when 

data were generated from the g and h distributions for average group sample sizes of 50 and 200, 

respectively. The accuracy of the Type I error rates for the RMM methods improves as sample size 

increases. When the average sample size per group was 50 (as can be seen in Table 2), the RMM methods’ 

empirical error rates were found to be more liberal than the nominal α level under several simulation 

conditions. For example, in cases where the sample size and variance were negatively paired, rates were 

as high as .180 when the groups’ distribution shapes were the same, and as high as .183 when the 

distribution shapes differed. When the average group sample size increased to 200 (see Table 3), the Type 

I error rates for the RMM methods become closer to the nominal α level, but are still somewhat liberal 

(e.g., as high as .10 in negative pairing conditions). As demonstrated in the tables, the error rates for the 

RMM approaches were very similar to one another regardless of the method used (e.g., traditional ML 

versus YB2).  
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Table 2 
 
g and h Distribution: Omnibus Type I Error Rates for K = 4 and Average n = 50 

 
Distribution n 𝜎 ANOVA Welch T Welch ML SB ADF YB1 YB2 

0,0,0,0 50,50,50,50 1,1,1,1 0.055 0.053 0.056 0.059 0.059 0.063 0.054 0.057 

 50,50,50,50 1,2,3,4 0.067 0.051 0.058 0.055 0.055 0.057 0.052 0.054 

 20,40,60,80 1,1,1,1 0.048 0.051 0.057 0.058 0.058 0.063 0.055 0.056 

 20,40,60,80 1,2,3,4 0.017 0.049 0.052 0.052 0.052 0.055 0.049 0.051 

 80,60,40,20 1,2,3,4 0.202 0.052 0.062 0.058 0.058 0.064 0.057 0.058 

1,1,1,1 50,50,50,50 1,1,1,1 0.041 0.059 0.049 0.067 0.067 0.068 0.060 0.063 

 50,50,50,50 1,2,3,4 0.075 0.102 0.062 0.107 0.107 0.112 0.103 0.105 

 20,40,60,80 1,1,1,1 0.049 0.075 0.059 0.087 0.087 0.090 0.081 0.084 

 20,40,60,80 1,2,3,4 0.026 0.071 0.048 0.078 0.078 0.082 0.073 0.076 

 80,60,40,20 1,2,3,4 0.197 0.156 0.075 0.169 0.169 0.180 0.166 0.172 

2,2,2,2 50,50,50,50 1,1,1,1 0.043 0.057 0.050 0.066 0.066 0.069 0.058 0.061 

 50,50,50,50 1,2,3,4 0.069 0.101 0.061 0.108 0.108 0.112 0.102 0.105 

 20,40,60,80 1,1,1,1 0.048 0.081 0.061 0.093 0.093 0.098 0.089 0.091 

 20,40,60,80 1,2,3,4 0.025 0.067 0.053 0.074 0.074 0.076 0.069 0.072 

 80,60,40,20 1,2,3,4 0.202 0.150 0.075 0.163 0.163 0.171 0.164 0.167 

0,0,1,1 50,50,50,50 1,1,1,1 0.048 0.065 0.046 0.071 0.071 0.073 0.066 0.068 

 50,50,50,50 1,2,3,4 0.077 0.110 0.060 0.117 0.117 0.121 0.112 0.115 

 20,40,60,80 1,1,1,1 0.056 0.050 0.048 0.055 0.055 0.061 0.054 0.056 

 20,40,60,80 1,2,3,4 0.029 0.082 0.054 0.091 0.091 0.094 0.085 0.087 

 80,60,40,20 1,2,3,4 0.184 0.143 0.068 0.151 0.151 0.160 0.151 0.152 
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Note: Dist = 0 is the normal distribution, Dist = 1 is a positively skewed distribution with g = 1 and h = 0, and Dist = 2 is the negatively skewed 
distribution for g = 1 and h = 0; Rates outside of Bradley’s liberal bounds are bolded.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0,0,2,2 50,50,50,50 1,1,1,1 0.050 0.063 0.049 0.070 0.070 0.072 0.065 0.067 

 50,50,50,50 1,2,3,4 0.080 0.112 0.059 0.120 0.120 0.124 0.113 0.117 

 20,40,60,80 1,1,1,1 0.064 0.059 0.059 0.068 0.068 0.074 0.066 0.069 

 20,40,60,80 1,2,3,4 0.026 0.072 0.051 0.078 0.078 0.080 0.075 0.076 

 80,60,40,20 1,2,3,4 0.195 0.156 0.069 0.165 0.165 0.175 0.165 0.167 

1,1,2,2 50,50,50,50 1,1,1,1 0.060 0.126 0.054 0.133 0.133 0.139 0.128 0.131 

 50,50,50,50 1,2,3,4 0.090 0.144 0.066 0.151 0.151 0.158 0.146 0.149 

 20,40,60,80 1,1,1,1 0.064 0.148 0.062 0.157 0.157 0.162 0.154 0.156 

 20,40,60,80 1,2,3,4 0.029 0.131 0.060 0.142 0.142 0.145 0.134 0.138 

 80,60,40,20 1,2,3,4 0.200 0.163 0.075 0.174 0.174 0.183 0.175 0.177 
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Table 3  
 
g and h Distribution: Omnibus Type I Error Rates for K = 4 and average n = 200 

Distribution n 𝜎 ANOVA Welch T Welch ML SB ADF YB1 YB2 

0,0,0,0 200,200,200,200 1,1,1,1 0.050 0.052 0.054 0.052 0.052 0.052 0.052 0.052 

 200,200,200,200 1,2,3,4 0.073 0.050 0.051 0.052 0.052 0.053 0.051 0.051 

 80,160,240,320 1,1,1,1 0.057 0.056 0.052 0.057 0.057 0.058 0.057 0.058 

 80,160,240,320 1,2,3,4 0.019 0.050 0.050 0.051 0.051 0.052 0.050 0.050 

 320,240,160,80 1,2,3,4 0.195 0.051 0.051 0.052 0.052 0.053 0.052 0.052 

1,1,1,1 200,200,200,200 1,1,1,1 0.048 0.058 0.048 0.060 0.060 0.061 0.058 0.059 

 200,200,200,200 1,2,3,4 0.068 0.073 0.050 0.074 0.074 0.075 0.073 0.073 

 80,160,240,320 1,1,1,1 0.047 0.067 0.049 0.068 0.068 0.068 0.067 0.067 

 80,160,240,320 1,2,3,4 0.021 0.061 0.050 0.062 0.062 0.062 0.061 0.061 

 320,240,160,80 1,2,3,4 0.189 0.098 0.057 0.100 0.100 0.101 0.100 0.100 

2,2,2,2 200,200,200,200 1,1,1,1 0.046 0.055 0.057 0.058 0.058 0.058 0.056 0.056 

 200,200,200,200 1,2,3,4 0.071 0.076 0.059 0.078 0.078 0.079 0.077 0.078 

 80,160,240,320 1,1,1,1 0.046 0.067 0.050 0.069 0.069 0.070 0.068 0.069 

 80,160,240,320 1,2,3,4 0.024 0.062 0.049 0.064 0.064 0.065 0.063 0.063 

 320,240,160,80 1,2,3,4 0.201 0.095 0.056 0.098 0.098 0.100 0.097 0.098 

0,0,1,1 200,200,200,200 1,1,1,1 0.052 0.063 0.050 0.065 0.065 0.066 0.063 0.063 

 200,200,200,200 1,2,3,4 0.070 0.074 0.050 0.075 0.075 0.075 0.074 0.075 

 80,160,240,320 1,1,1,1 0.057 0.055 0.053 0.058 0.058 0.059 0.057 0.057 

 80,160,240,320 1,2,3,4 0.024 0.068 0.052 0.070 0.070 0.071 0.068 0.069 

 320,240,160,80 1,2,3,4 0.194 0.095 0.051 0.097 0.097 0.100 0.097 0.098 

0,0,2,2 200,200,200,200 1,1,1,1 0.049 0.056 0.055 0.057 0.057 0.057 0.056 0.056 
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 200,200,200,200 1,2,3,4 0.063 0.052 0.050 0.054 0.054 0.056 0.053 0.054 

 80,160,240,320 1,1,1,1 0.052 0.078 0.056 0.080 0.080 0.082 0.079 0.079 

 80,160,240,320 1,2,3,4 0.024 0.055 0.051 0.057 0.057 0.057 0.055 0.056 

 320,240,160,80 1,2,3,4 0.197 0.058 0.050 0.061 0.061 0.062 0.060 0.061 

1,1,2,2 200,200,200,200 1,1,1,1 0.048 0.076 0.052 0.077 0.077 0.078 0.076 0.076 

 200,200,200,200 1,2,3,4 0.074 0.085 0.053 0.086 0.086 0.087 0.085 0.086 

 80,160,240,320 1,1,1,1 0.054 0.096 0.053 0.097 0.097 0.099 0.096 0.097 

 80,160,240,320 1,2,3,4 0.023 0.086 0.054 0.087 0.087 0.088 0.086 0.087 

 320,240,160,80 1,2,3,4 0.211 0.106 0.062 0.107 0.107 0.110 0.108 0.108 
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𝝌𝟐distribution. Tables 4 and 5 display the empirical error rates when data follow a 𝜒2distribution with 

three degrees of freedom for average group sample sizes of 50 and 200, respectively. The most notable 

finding is that the Type I error rates for all of the procedures are better than those observed in similar 

conditions but with data generated from the g and h distribution. As can be seen in the tables, the RMM 

methods’ error rates improve with the larger sample size condition whereby they only fall outside of 

Bradley’s liberal bounds when the average n is 50 in the negative pairing conditions, and are still less than 

2α. When the sample size increases to 200, the RMM error rates are accurate in all of the variance-sample 

size pairings. The trimmed Welch procedure’s error rates are accurate across all conditions regardless of 

sample size.  
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Table 4 
 
𝜒2Distribution: Omnibus Type I Error Rates for K = 4 and Average n = 50 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: Dist=1 is the 𝜒2distribution with 3 degrees of freedom, and Dist=0 is the normal distribution 
 
 
 
 
 
 
 
 
 
 
 
 

Distribution n 𝜎 ANOVA Welch T Welch ML SB ADF YB1 YB2 

1,1,1,1 50,50,50,50 1,1,1,1 0.050 0.057 0.051 0.063 0.063 0.067 0.059 0.061 

 50,50,50,50 1,2,3,4 0.067 0.065 0.054 0.068 0.068 0.071 0.065 0.067 

 20,40,60,80 1,1,1,1 0.053 0.060 0.056 0.070 0.070 0.074 0.066 0.068 

 20,40,60,80 1,2,3,4 0.023 0.054 0.056 0.058 0.058 0.060 0.055 0.057 

 80,60,40,20 1,2,3,4 0.212 0.083 0.070 0.092 0.092 0.101 0.092 0.095 

    0,0,1,1 50,50,50,50 1,1,1,1 0.051 0.054 0.049 0.059 0.059 0.062 0.055 0.057 

 50,50,50,50 1,2,3,4 0.072 0.069 0.051 0.073 0.073 0.076 0.070 0.072 

 20,40,60,80 1,1,1,1 0.046 0.049 0.054 0.058 0.058 0.064 0.056 0.059 

 20,40,60,80 1,2,3,4 0.021 0.055 0.058 0.061 0.061 0.065 0.056 0.058 

 80,60,40,20 1,2,3,4 0.205 0.077 0.064 0.083 0.083 0.093 0.085 0.088 
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Table 5 
 
𝜒2Distribution: Omnibus Type I Error Rates for K = 4 and Average n = 200 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Distribution n 𝜎 ANOVA Welch T Welch ML SB ADF YB1 YB2 

1,1,1,1 200,200,200,200 1,1,1,1 0.051 0.053 0.052 0.054 0.054 0.054 0.053 0.053 

 200,200,200,200 1,2,3,4 0.069 0.055 0.049 0.056 0.056 0.056 0.055 0.056 

 80,160,240,320 1,1,1,1 0.052 0.055 0.050 0.057 0.057 0.058 0.057 0.057 

 80,160,240,320 1,2,3,4 0.021 0.049 0.053 0.049 0.049 0.051 0.049 0.050 

 320,240,160,80 1,2,3,4 0.196 0.058 0.050 0.059 0.059 0.060 0.060 0.060 

    0,0,1,1 200,200,200,200 1,1,1,1 0.048 0.049 0.048 0.050 0.050 0.051 0.049 0.050 

 200,200,200,200 1,2,3,4 0.065 0.048 0.051 0.049 0.049 0.049 0.048 0.048 

 80,160,240,320 1,1,1,1 0.051 0.051 0.057 0.053 0.053 0.055 0.053 0.053 

 80,160,240,320 1,2,3,4 0.019 0.053 0.046 0.055 0.055 0.055 0.054 0.054 

 320,240,160,80 1,2,3,4 0.201 0.061 0.055 0.064 0.064 0.065 0.064 0.064 



Robust Means Modeling vs Traditional Robust Tests     21 
 

Power Rates 

 Fan and Hancock (2012) did not report power results for the trimmed Welch because their 

simulation study reported inaccurate error rates for the test. As this was not found in our simulation, we 

present power results for the same conditions investigated above. Power rates are in bold when the error 

rates for the same conditions in the previous section fell outside of Bradley’s liberal bounds. The 

population means are different for the average n = 50 and average n = 200 conditions because the mean 

pattern reflects power rates of approximately .80 for homoscedastic and normally distributed data with 

equal sample sizes per group. Taking this approach means that there is no power increase by increasing 

sample size from 50 to 200, because the conditions use different population means to assess power.  

g and h distribution. Tables 6 and 7 present the power results under the same conditions used for Type I 

error rates for the two sample sizes when data follow the g and h distribution. When all assumptions have 

been met, the trimmed Welch has somewhat lower power than the other procedures by about 8% (which 

is expected because of the reduced effective sample size with trimming). With skewed data, however, the 

trimmed Welch demonstrates comparable, and for many conditions, superior power rates compared to the 

RMM methods. This pattern of results was true even when the RMM methods were found to have liberal 

error rates. Note that for all procedures, unequal variances drastically decreases power to detect 

population mean differences. As was seen with Type I error rates, the RMM procedures exhibited similar 

power rates to one another, such that one procedure did not consistently outperform the others.  

𝝌𝟐distribution. Tables 8 and 9 present the power results for outcomes that follow a 𝜒2distribution with 

three df. A similar pattern of power results was observed as those discussed above when data were 

generated from the g and h distribution. Namely, the power results for the trimmed Welch and RMM 

approaches were quite similar across the conditions and the different RMM procedures were almost 

identical to one another. 
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Table 6  
 
Power Results for g and h distributions with K = 4 and average n = 50 
 

Distribution n 𝜎 ANOVA Welch T Welch ML SB ADF YB1 YB2 

0,0,0,0 50,50,50,50 1,1,1,1 0.810 0.803 0.731 0.814 0.814 0.818 0.805 0.809 

 50,50,50,50 1,2,3,4 0.156 0.190 0.176 0.206 0.206 0.214 0.194 0.200 

 20,40,60,80 1,1,1,1 0.687 0.675 0.595 0.696 0.696 0.708 0.690 0.697 

 20,40,60,80 1,2,3,4 0.054 0.187 0.165 0.203 0.203 0.209 0.191 0.195 

 80,60,40,20 1,2,3,4 0.311 0.150 0.138 0.165 0.165 0.177 0.164 0.169 

1,1,1,1 50,50,50,50 1,1,1,1 0.833 0.881 0.999 0.888 0.888 0.893 0.882 0.885 

 50,50,50,50 1,2,3,4 0.111 0.116 0.488 0.131 0.131 0.138 0.122 0.126 

 20,40,60,80 1,1,1,1 0.756 0.846 0.984 0.858 0.858 0.862 0.853 0.856 

 20,40,60,80 1,2,3,4 0.029 0.217 0.513 0.232 0.232 0.237 0.219 0.225 

 80,60,40,20 1,2,3,4 0.275 0.085 0.320 0.101 0.101 0.109 0.099 0.102 

2,2,2,2 50,50,50,50 1,1,1,1 0.820 0.875 0.999 0.882 0.882 0.884 0.876 0.879 

 50,50,50,50 1,2,3,4 0.252 0.445 0.598 0.457 0.457 0.465 0.448 0.454 

 20,40,60,80 1,1,1,1 0.726 0.779 0.997 0.795 0.795 0.802 0.790 0.792 

 20,40,60,80 1,2,3,4 0.119 0.362 0.576 0.374 0.374 0.383 0.367 0.373 

 80,60,40,20 1,2,3,4 0.407 0.455 0.506 0.469 0.469 0.481 0.467 0.471 

0,0,1,1 50,50,50,50 1,1,1,1 0.846 0.841 0.951 0.855 0.855 0.860 0.844 0.849 

 50,50,50,50 1,2,3,4 0.100 0.112 0.326 0.124 0.124 0.129 0.115 0.118 

 20,40,60,80 1,1,1,1 0.740 0.717 0.857 0.744 0.744 0.757 0.733 0.742 

 20,40,60,80 1,2,3,4 0.030 0.127 0.289 0.138 0.138 0.145 0.131 0.134 

 80,60,40,20 1,2,3,4 0.250 0.100 0.231 0.120 0.120 0.126 0.114 0.117 
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Bolded values indicate conditions where the Type I error rates were unacceptable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0,0,2,2 50,50,50,50 1,1,1,1 0.796 0.845 0.911 0.855 0.855 0.857 0.848 0.852 

 50,50,50,50 1,2,3,4 0.252 0.414 0.440 0.426 0.426 0.433 0.416 0.422 

 20,40,60,80 1,1,1,1 0.711 0.722 0.821 0.739 0.739 0.749 0.734 0.739 

 20,40,60,80 1,2,3,4 0.118 0.347 0.335 0.360 0.360 0.366 0.350 0.354 

 80,60,40,20 1,2,3,4 0.396 0.414 0.376 0.434 0.434 0.447 0.433 0.438 

1,1,2,2 50,50,50,50 1,1,1,1 0.768 0.868 0.989 0.874 0.874 0.876 0.868 0.871 

 50,50,50,50 1,2,3,4 0.263 0.431 0.547 0.439 0.439 0.448 0.434 0.437 

 20,40,60,80 1,1,1,1 0.704 0.826 0.968 0.835 0.835 0.841 0.832 0.835 

 20,40,60,80 1,2,3,4 0.120 0.438 0.546 0.451 0.451 0.457 0.441 0.445 

 80,60,40,20 1,2,3,4 0.412 0.416 0.475 0.432 0.432 0.444 0.430 0.435 
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Table 7  
 
Power Results for g and h distributions with K = 4 and average n = 200 

Distribution n 𝜎 ANOVA Welch T Welch ML SB ADF YB1 YB2 

0,0,0,0 200,200,200,200 1,1,1,1 0.803 0.799 0.729 0.801 0.801 0.803 0.799 0.800 

 200,200,200,200 1,2,3,4 0.145 0.196 0.174 0.200 0.200 0.202 0.197 0.199 

 80,160,240,320 1,1,1,1 0.700 0.696 0.623 0.701 0.701 0.703 0.699 0.700 

 80,160,240,320 1,2,3,4 0.052 0.192 0.164 0.195 0.195 0.196 0.193 0.193 

 320,240,160,80 1,2,3,4 0.318 0.172 0.151 0.177 0.177 0.180 0.176 0.177 

1,1,1,1 200,200,200,200 1,1,1,1 0.808 0.839 0.999 0.840 0.840 0.842 0.839 0.840 

 200,200,200,200 1,2,3,4 0.123 0.135 0.514 0.137 0.137 0.139 0.136 0.137 

 80,160,240,320 1,1,1,1 0.736 0.790 0.993 0.795 0.795 0.797 0.793 0.794 

 80,160,240,320 1,2,3,4 0.040 0.198 0.536 0.202 0.202 0.203 0.198 0.200 

 320,240,160,80 1,2,3,4 0.273 0.090 0.393 0.094 0.094 0.097 0.092 0.094 

2,2,2,2 200,200,200,200 1,1,1,1 0.819 0.847 0.999 0.849 0.849 0.850 0.847 0.848 

 200,200,200,200 1,2,3,4 0.224 0.354 0.593 0.357 0.357 0.358 0.355 0.356 

 80,160,240,320 1,1,1,1 0.700 0.718 0.998 0.724 0.724 0.727 0.721 0.722 

 80,160,240,320 1,2,3,4 0.084 0.272 0.552 0.276 0.276 0.278 0.273 0.275 

 320,240,160,80 1,2,3,4 0.378 0.342 0.502 0.347 0.347 0.349 0.346 0.347 

0,0,1,1 200,200,200,200 1,1,1,1 0.827 0.823 0.949 0.827 0.827 0.829 0.824 0.825 

 200,200,200,200 1,2,3,4 0.117 0.141 0.362 0.145 0.145 0.146 0.141 0.143 

 80,160,240,320 1,1,1,1 0.721 0.709 0.861 0.715 0.715 0.719 0.713 0.715 

 80,160,240,320 1,2,3,4 0.033 0.140 0.307 0.144 0.144 0.145 0.140 0.141 

 320,240,160,80 1,2,3,4 0.268 0.102 0.257 0.105 0.105 0.108 0.105 0.105 

0,0,2,2 200,200,200,200 1,1,1,1 0.784 0.812 0.931 0.816 0.816 0.817 0.813 0.814 
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Bolded values indicate conditions where the Type I error rates were unacceptable. 
 

 

 

 

 

 

 

 

 

 

 

 200,200,200,200 1,2,3,4 0.212 0.329 0.419 0.332 0.332 0.333 0.330 0.331 

 80,160,240,320 1,1,1,1 0.690 0.709 0.843 0.715 0.715 0.718 0.714 0.715 

 80,160,240,320 1,2,3,4 0.086 0.276 0.321 0.279 0.279 0.280 0.277 0.278 

 320,240,160,80 1,2,3,4 0.365 0.314 0.349 0.318 0.318 0.322 0.318 0.320 

1,1,2,2 200,200,200,200 1,1,1,1 0.774 0.832 0.998 0.835 0.835 0.836 0.832 0.833 

 200,200,200,200 1,2,3,4 0.216 0.338 0.557 0.341 0.341 0.344 0.340 0.341 

 80,160,240,320 1,1,1,1 0.695 0.783 0.989 0.786 0.786 0.787 0.785 0.786 

 80,160,240,320 1,2,3,4 0.086 0.334 0.541 0.339 0.339 0.340 0.335 0.336 

 320,240,160,80 1,2,3,4 0.370 0.314 0.462 0.318 0.318 0.322 0.318 0.320 
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Table 8 
 
Power Rates for the 𝜒2distribution with K = 4 and average n = 50 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bolded values indicate conditions where the Type I error rates were unacceptable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Distribution n 𝜎 ANOVA Welch T Welch ML SB ADF YB1 YB2 

1,1,1,1 50,50,50,50 1,1,1,1 0.802 0.802 0.827 0.814 0.814 0.820 0.803 0.809 

 50,50,50,50 1,2,3,4 0.134 0.145 0.166 0.158 0.158 0.166 0.150 0.154 

 20,40,60,80 1,1,1,1 0.715 0.733 0.714 0.751 0.751 0.758 0.743 0.747 

 20,40,60,80 1,2,3,4 0.041 0.190 0.195 0.206 0.206 0.211 0.193 0.198 

 80,60,40,20 1,2,3,4 0.288 0.093 0.122 0.107 0.107 0.116 0.104 0.109 

    0,0,1,1 50,50,50,50 1,1,1,1 0.812 0.797 0.784 0.813 0.813 0.817 0.800 0.806 

 50,50,50,50 1,2,3,4 0.119 0.140 0.167 0.154 0.154 0.161 0.144 0.149 

 20,40,60,80 1,1,1,1 0.704 0.684 0.656 0.708 0.708 0.719 0.697 0.705 

 20,40,60,80 1,2,3,4 0.039 0.154 0.169 0.169 0.169 0.175 0.159 0.164 

 80,60,40,20 1,2,3,4 0.285 0.104 0.117 0.125 0.125 0.135 0.120 0.125 



Robust Means Modeling vs Traditional Robust Tests     27 
 

Table 9 
 
Power Rates for the 𝜒2distribution with K = 4 and average n = 200 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bolded values indicate conditions where the Type I error rates were unacceptable. 
 
 

 

Distribution n 𝜎 ANOVA Welch T Welch ML SB ADF YB1 YB2 

1,1,1,1 200,200,200,200 1,1,1,1 0.806 0.803 0.841 0.806 0.806 0.807 0.804 0.804 

 200,200,200,200 1,2,3,4 0.147 0.163 0.188 0.166 0.166 0.168 0.163 0.165 

 80,160,240,320 1,1,1,1 0.692 0.700 0.743 0.706 0.706 0.708 0.703 0.705 

 80,160,240,320 1,2,3,4 0.045 0.191 0.196 0.194 0.194 0.195 0.192 0.193 

 320,240,160,80 1,2,3,4 0.315 0.130 0.143 0.134 0.134 0.136 0.133 0.135 

    0,0,1,1 200,200,200,200 1,1,1,1 0.799 0.793 0.789 0.796 0.796 0.798 0.793 0.795 

 200,200,200,200 1,2,3,4 0.136 0.160 0.176 0.165 0.165 0.167 0.161 0.163 

 80,160,240,320 1,1,1,1 0.704 0.695 0.674 0.703 0.703 0.707 0.701 0.702 

 80,160,240,320 1,2,3,4 0.040 0.166 0.185 0.170 0.170 0.172 0.166 0.168 

 320,240,160,80 1,2,3,4 0.294 0.127 0.137 0.131 0.131 0.133 0.130 0.132 
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Conclusion 

 Given the popularity of comparing mean differences and prevalence of assumption violation in 

research in the behavioural sciences (e.g., Blanca et al., 2011; Golinski & Cribbie, 2009; Keselman et al., 

1998; Micceri, 1989), it is important that researchers have viable alternatives to the traditional ANOVA. 

A recent study proposed another robust statistical tool for comparing mean differences called robust 

means modeling (Fan & Hancock, 2012). Given their surprising results regarding the trimmed Welch test, 

the current study sought to replicate their findings and extend their paper in a few important ways; namely 

by examining their Type I error and power rates with other families of distributions (e.g., g/h, 𝜒2) and 

exploring their performance when the populations have differing distribution shapes.  

RMM Procedures 

 Although Fan and Hancock (2012) recommended the YB1 or YB2 approaches as the better 

performing tests, we found little deviation in the performance of the different RMM methods. Type I error 

rates for the procedures were similar and there was no noticeable power advantage of any other 

approaches under the conditions investigated. The degree of similarity between the regular ML approach 

and the ADF methods was somewhat surprising because ML requires the assumption of normally 

distributed data. If one were to choose between the methods, the regular ML approach or Satorra-Bentler 

corrected ML test might actually be preferable with smaller sample sizes because they did not exhibit any 

problems with nonpositive definite matrices, whereas this was sometimes an issue for the ADF methods. 

 Distribution shape had an effect on the performance of the RMM methods. Empirical Type I error 

rates were much better when data followed a 𝜒2 (with three df) distribution compared to the positively or 

negatively skewed g and h distribution. However, this may simply be due to severity of nonnormality as 

the 𝜒2 distribution is less skewed than the g and h distributions used in the current study. Sample size also 

influenced the empirical Type I error rates, as the tests became overly conservative with smaller sample 

sizes. Given that the methods use ML estimation and the ADF methods are notorious for requiring larger 

sample sizes, it is possible that the models produces more biased estimates in smaller sample sizes, which 

manifested in the poorer Type I error rates.  
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Trimmed Welch Versus RMM 

 The most noteworthy finding is the difference between the performance of the trimmed Welch 

ANOVA and the RMM methods in the current study compared to what was reported in Fan and Hancock 

(2012). Specifically, they reported inconsistent and often extremely liberal Type I error rates for the 

trimmed Welch, whereas we found that the rates were very stable around the nominal α level. In fact, the 

trimmed Welch was the only procedure with empirical Type I error rates inside an acceptable range under 

all of the conditions tested. Our results regarding the Type I error rates of the Welch test on trimmed 

means agree with the results of several previous simulation studies including Cribbie, Wilcox, Bewell & 

Keselman (2007), Cribbie et al. (2012), Lix and Keselman (2006), and Wilcox (1995), and therefore we 

are confident that the Welch test on trimmed means is not overly liberal with heteroscedastic and/or 

skewed distributions. Additionally the trimmed Welch had comparable or higher power than the RMM 

tests, including conditions where the RMM’s Type I error rates were more liberal than the nominal α rate.  

 A last topic worth discussing when comparing the trimmed Welch procedure to the RMM 

approaches is that of effect sizes (ES). Reporting statistical significance tests does not allow for an 

indication of the magnitude of group differences. Researchers who conduct an ANOVA often present the 

raw group means (or mean differences) as their ES measure when data are normally distributed (or have 

similar distribution shapes) and group variances are approximately equal. However, reporting raw mean 

differences may not be the best choice under assumption violation, as means are sensitive to nonnormality 

and outliers. Reporting trimmed means, however, is an intuitive and appropriate ES when conducting the 

trimmed Welch. It has an easy interpretation for applied researchers who are accustomed to reporting 

means or mean differences. In contrast, an appropriate measure of ES in conjunction with the RMM 

procedures is unclear. Reporting raw means with RMM methods is somewhat inconsistent as they do not 

account for the nonnormality or heterogeneity of the data.  

Summary   
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 In contrast to Fan and Hancock (2012), our simulation study found that RMM methods do not 

demonstrate better Type I error control and power than the trimmed Welch ANOVA. Whereas the Type I 

error rates of the RMM method often deviated from the nominal α level, the rates for the trimmed Welch 

were acceptable under all conditions. Further, the trimmed Welch had comparable if not higher power 

than the RMM methods when assumptions have been violated. Given the ease of interpretation and choice 

of ES using the trimmed Welch, its excellent Type I error control and often superior power under a 

variety of conditions including nonnormal distributions and unequal sample sizes and variances, we 

recommend that researchers use the trimmed Welch procedure for comparing the means of independent 

groups in situations where nonnormality and unequal variances are an issue.  
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