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 Part 4: Confidence Intervals, Effect Sizes and 
Confidence Intervals for Effect Sizes 
 

 Part 5: Replication 
 

 Part 6: Bayesian Analysis 



 When we use a sample statistic (e.g., M) to 
estimate a population parameter (e.g., μ), an 
important question relates to how precisely 
we have measured the parameter 

 A confidence interval can give us an estimate 
of that precision 
◦ X% Confidence Interval (CI) 
 Interpretation: If we sample repeatedly from a 

population, X% of the confidence intervals are 
expected to contain the population parameter 

 



 Example: 95% CI 
◦ If we sample repeatedly from a population (i.e., we 

extract thousands of samples from a given 
population), 95% of the confidence intervals 
computed from the samples are expected to 
contain the population parameter 

 
 Note: We CANNOT say “there is a 95% chance 

that the true mean lies within our calculated 
CI” 



 (1-α)% CI for the Mean (σ known) 
 
◦ To calculate the CI, we need to know the z value 

that cuts off the highest α/2 of the cases from the 
rest 
◦ For a 95% CI: 
 (1-(.05/2) = .975 (area in lower tail) 
◦ In R:  
 qnorm(.975, lower.tail=TRUE) = 1.96 



◦ M ± SEM * z(1-(α/2) 
◦ M ± σ 𝑁𝑁�  * z(1-(α/2) 

 
◦ Example - PTSD 
 We sampled N = 25 students from a population 

with σ = 5 and gave them PTSD training 
 After the training we obtain M = 28 

 We are interested in how precisely we are 
estimating the true mean 

 Calculate and interpret the 95% confidence 
interval 



 95% CI = M ± SEM * z1-(.05/2) 
 95% CI = M ± σ 𝑁𝑁�  * z.975 

 
 95% CI = 28 ± 5 25�  * 1.96 
◦ 28 - (1)(1.96) = 26.04 
◦ 28 + (1)(1.96) = 29.96 

 Thus, the 95% CI = (26.04, 29.96) 
 Interpretation 
◦ If we conduct the study over and over again, 95% of 

the CIs are expected to include the population mean  
◦ Researcher’s job: Determine if the precision (i.e., 

width) of the CI is acceptable 
 Researchers often don’t report CIs because they are much 

wider than what they would like 
 

 



 What determines the width of a CI? 
 Recall: M ± σ 𝑁𝑁�  * z(1-(α/2) 
 

 
◦ Size of the standard deviation 
 Less variability, narrower CI 
◦ Sample Size 
 Larger N, narrower CI 
◦ Level of Confidence (e.g., 95%) 
 Lower the confidence, the narrower the CI 
 



 



 1) They are simply used to determine 
statistical significance 

 
◦ If the CI does not include the null value then the 

effect is statistically significant 
 

 E.g., If testing H0: μ = 10, then if the CI does not 
include 10 then it is concluded that the mean is 
significantly different from 10 
 Logically then, if the CI does include 10 then we cannot 

reject the null hypothesis 
◦ But …. that is not the primary purpose of CIs 



 2) Misinterpretations of CIs 
◦ Recall the correct interpretation: 
 If we conducted the study over and over again, X% of 

the CIs are expected to include the population 
parameter 

 
◦ However, many researchers wish/hope that they 

could say that there is an X% chance that the 
population parameter falls within their single 
computed CI 



 2) Misinterpretations of CIs 
◦ A recent study by Hoekstra, Morey, Rouder and 

Wagenmakers (2014) looked at misinterpretations 
of CIs 
◦ They presented participants with the following 

statement: 
 “A researcher reports a 95% CI for the mean that 

ranges from 0.1 to 0.4.” 
◦ They then asked the participants a series of T/F 

questions 



 Hoekstra et al. T/F questions 
 

◦ 1. The probability that the true mean is greater than 0 is at least 95% 
 

◦ 2. The probability that the true mean equals 0 is smaller than 5% 
 

◦ 3. The “null hypothesis” that the true mean equals 0 is likely to be 
incorrect 
 

◦ 4. There is a 95% probability that the true mean lies between 0.1 and 
0.4 
 

◦ 5. We can be 95% confident that the true mean lies between 0.1 and 0.4 
 

◦ 6. If we were to repeat the experiment over and over, then 95% of the 
time the true mean falls between 0.1 and 0.4 
 



 Hoekstra et al. T/F questions 
 

◦ 1. The probability that the true mean is greater than 0 is at least 
95%  
 

◦ 2. The probability that the true mean equals 0 is smaller than 5% 
 

◦ 3. The “null hypothesis” that the true mean equals 0 is likely to be 
incorrect 
 

 These discuss probabilities associated with a 
hypothesis, which is not allowed in a frequentist 
framework 



 Hoekstra et al. T/F questions 
 

◦ 4. There is a 95% probability that the true mean lies between 0.1 
and 0.4 
 

◦ 5. We can be 95% confident that the true mean lies between 0.1 
and 0.4 
 

◦ 6. If we were to repeat the experiment over and over, then 95% of 
the time the true mean falls between 0.1 and 0.4 

 
 These make reference to the specific interval, which 

is not how we interpret CIs 
◦ We reference hypothetical future intervals, but not the 

single current interval 



 



 Nakagawa and Cuthill (2007) discuss how 
effect size encompasses: 
◦ (a) a statistic which estimates the magnitude of an 

effect (e.g., r) 
◦ (b) the actual values calculated from certain effect 

statistics (e.g., r  = .3) 
◦ (c) a relevant interpretation of an estimated 

magnitude of an effect from the effect statistics 
(e.g., “medium”) 



 Olejnik and Algina (2003) define an effect 
size measure as: 
◦ A standardized index that estimates a parameter 

that is independent of sample size and quantifies 
the magnitude of the difference between 
populations or the relationship between 
explanatory and response variables 

 Grissom and Kim (2012) 
◦ Whereas a test of statistical significance is 

traditionally used to provide evidence (attained p 
level) that a null hypothesis is wrong, an effect size 
(ES) measures the degree to which such a null 
hypothesis is wrong (if it is wrong) 



 Cohen (1988) 
◦ The degree to which the null hypothesis is false 

 Thompson (2004) 
◦ Effect sizes quantify by how much sample results 

diverge from the null hypothesis 
 Kelley & Preacher (2012) 
◦ A quantitative reflection of the magnitude of some 

phenomenon that is used for the purpose of 
addressing a question of interest 
 

 Summary: Lots of different ways of defining 
“effect size” 



 What about the Sample Size issue? 
◦ It is interesting that some definitions of effect sizes 

don’t mention that they should be immune to any 
effects of sample size 
◦ One of the primary reasons to focus on effect sizes 

is that we want a statistic that is not highly related 
to N 
 Recall that many statistics (e.g., t, F) are highly related 

to sample size (larger N -> more extreme statistic)  
 It is important that any measure of effect size 

be independent of the size of the sample 



 Following Nakagawa and Cuthill, we can outline 
the following characteristics of effect size 
◦ Dimension 
 Abstract conceptualization regarding the effect of interest 
 E.g., “Difference in Central Tendencies” is a dimension (that 

could be measured by mean difference, median difference, 
trimmed mean difference, etc.) 

◦ Measure/Index 
 The operational definition of the dimension 
 E.g., “standardized mean difference” could be the measure of 

differences in central tendency 
◦ Value 
 The raw value calculated from the measure 
 E.g., the standardized mean difference is .5 



 Effect sizes quantify sample information, so 
the clearest answer is that an effect size value 
is descriptive 

 However, since the sample effect size is an 
estimate of the population parameter, can we 
think of effect sizes as inferential? 
◦ A t-test is calculated on a sample, however we try 

to make inferences regarding mean differences in 
the population, so this could also apply to effect 
sizes 



 One of the most interesting debates 
regarding effect sizes is whether 
unstandardized or standardized effect sizes 
are most useful 
◦ When the units of measurement are meaningful, 

many researchers recommend unstandardized 
effect sizes 
 E.g., Canadians spend 3 hours less a week watching TV 

relative to Americans 
 E.g., In academia, males earn $5000 more than 

females for the same work 
◦ However, don’t we need to know something about 

the variability? 



 Seems clear here that the groups differ 
meaningfully 



 But what about here? Same raw mean 
difference 



 Multiple Regression 
◦ Effect of Years of Education (SD = 3) and Years on the Job (SD = 

10) on Income 
 

 Unstandardized Coefficients 
◦ Incomeʹ = 1995 + 201*YrsEd + 100*YrsJob 
 One more year of education increases income by about $200, where one 

more year on the job increases income by about $100  
 Standardized Coefficients 
◦ YrsEd = .45, YrsJob = .95 
 One SD increase in years of education (~ 3 years) increases income by 

about a half a SD, where one SD increase in years on the job (about 10 
years) increases income by about a SD  

 
 In the first case YrsEd has the larger effect size, whereas in 

the second case YrsJob has the larger effect size 
◦ Which is more appropriate to use in this situation? 



 We often observe that researchers provide an 
effect size for an omnibus test (e.g., effect 
size for a one-way ANOVA with 4 groups), 
but do not provide effect sizes for the 
specific comparisons of the means of each of 
the groups (e.g., Grp 1 vs Grp 2) 
◦ Another example would be providing an effect size 

for a multiple regression model (e.g., R2) instead of 
for each predictor 

 It is more important to provide effect sizes 
for targeted effects than for omnibus effects 



 Correlation/Percent of Variance Explained 
◦ r/r2 

 Also encompasses partial/semi-partial r, which are popular 
in multiple regression 

 Pratt Indices – relative importance of predictors in linear 
models, in a correlation metric 

◦ η2/ω2 

 Biased/less biased estimates of the proportion of variability 
in the outcome that is explained by a predictor 
 Partial versions of η2 and ω2 are also available for multiple 

predictor models, however much caution should be used in 
interpreting these statistics 

◦ f2 
 Generally used for omnibus F tests 
 

 
 
 



 Mean Difference 
◦ M1 – M2 (unstandardized) 
◦ 𝑑𝑑 = 𝑀𝑀1−𝑀𝑀2

𝑠𝑠
 (standardized) 

 There are also variations, such as Hedges g (e.g., g is better with very 
small N) 

 s can vary depending on what measure of variability you feel is most 
appropriate for standardization 

 
 Regression Coefficients 
◦ b (unstandardized) – change in DV for 1 unit change in predictor 
◦ β (standardized) – SD change in DV for 1 SD change in predictor 
 

 Categorical Relations 
◦ Odds Ratio 
◦ Relative Risk (probability metric) 
◦ Cramer’s V = χ2

𝑁𝑁 min 𝑟𝑟,𝑐𝑐 −1
 

 can be interpreted like a correlation 
 
 
 

 
 
 



 Common Language Effect Size Estimators 
◦ Differences Among Two Groups 
 The probability that a randomly selected score from the one 

population will be greater than a randomly sampled score from 
the other population 

 CLES = Φ 𝑧𝑧 = Φ 𝑑𝑑
2

= Φ 𝑀𝑀1−𝑀𝑀2
𝑠𝑠𝑝𝑝 2

 
 Φ = lower tail probability under the standard normal distribution 

 E.g., Heights of men (M = 69.7, SD = 2.8) and women (M = 
64.3, SD  =2.6) 

 Φ 𝑀𝑀1−𝑀𝑀2
𝑠𝑠𝑝𝑝 2

= Φ 69.7−64.3
2.7 2

= Φ 1.41 =  .92 

 Thus, there is a 92% chance that the male will be taller than the 
female if each are randomly drawn from their population 

 
 
 

 
 
 

𝑠𝑠𝑝𝑝 =
𝑛𝑛1 − 1 𝑠𝑠12 + 𝑛𝑛2 − 1 𝑠𝑠22

𝑛𝑛1 + 𝑛𝑛2 − 2
 



 Common Language Effect Size Estimators 
◦ Correlation 
 Assume that we have randomly sampled two 

individuals’ scores on X and Y 
 If individual one is defined as the individual with the 

larger score on X, then the CL statistic is the probability 
that individual one also has the larger score on Y  

 CLES = sin
−1( 𝑟𝑟)
π

+.5 
 E.g., father’s and son’s heights have r = .4 
 CLES = sin

−1( .4)
π

+ .5 = .63 
 If father A is taller than father B, there is a 63% chance that 

son A will be taller than son B 
 
 
 

 
 
 



 Although effect sizes are extremely 
meaningful on their own, without a CI we 
have no information regarding the precision 
of the effect size 
◦ Without a measure of precision, of what value is an 

effect size? 
 E.g., say we measured depression for two males and 

two females and calculated Cohen’s d to be .4 
 Would you be confident in reporting that effect size to 

others? Could we make any inferences to the 
population of males and females? 
 The CI could be {.39, .41} or {-2,4} 

 



 CI for Cohen’s d 
◦ Noncentral t distribution for one sample 
◦ 𝑡𝑡 = 𝑀𝑀−µ0

𝑠𝑠𝑀𝑀
+ µ−µ0

σ𝑀𝑀
= 𝑀𝑀−µ0

𝑠𝑠
𝑁𝑁�

+ µ−µ0
σ

𝑁𝑁�
= 𝑀𝑀−µ0

𝑠𝑠𝑀𝑀
+ 𝑛𝑛𝑛𝑛𝑛𝑛 

 ncp = noncentrality parameter 
◦ The left part of the equation is the usual t (central t) 

statistic, whereas the right part is the ncp 
◦ The ncp “shifts” the distribution right or left depending 

on the sign of µ − µ0 
◦ We know that the population value of d (let’s call it d*)  

is µ−µ0
σ

, so d* = ncp 𝑁𝑁 
 If can get the CI for the ncp, we can easily find the CI for d 



 CI for ncp 
◦ To find the CI for ncp, we are looking for the values 

of ncp that cutoff the lower α/2 and upper α/2 
from the noncentral t distribution 
 This is messy, so let’s cheat and use R 
◦ pt(t,df,ncp) can be used to find the value of ncp 

that cutoff the upper and lower tails 
◦ E.g., let say we want to know if the depression 

scores for a group of prison inmates differ from 10 
(a previously published value). We sample 20 
inmates, and M = 9.2, s = 1.4 
 𝑡𝑡 = 9.2−10

1.4
20�

=-2.55, d = 9.2−10
1.4

=-.57 



 CI for ncp … by trial and error 
◦ Lower tail 
 > pt(-2.56,df=19,ncp=-1)  
 [1] 0.07886299  

 > pt(-2.56,df=19,ncp=-.45)  
 [1] 0.0271863  

 > pt(-2.56,df=19,ncp=-.41)  
 [1] 0.02493609  

◦ Upper Tail 
 > pt(-2.56,df=19,ncp=-2)  
 [1] 0.3136319  

 > pt(-2.56,df=19,ncp=-4.75)  
 [1] 0.9798424  

 > pt(-2.56,df=19,ncp=-4.65)  
 [1] 0.9749218 



 Thus, the 95% CI for ncp is: 
◦ -4.65,-.41 
 

 CI for d 
◦ dlower = ncplower / 𝑁𝑁 = -4.65/ 20 = -1.04 

 
◦ dupper = ncpupper / 𝑁𝑁 = -.41/ 20 = -.09 

 
◦ 95% CI for d = {-1.04, -.09} 
 



 CI for d 
◦ An easier way to compute the CI for d is to use a 

built-in function from R 
 

>library(psych) 
> d.ci(-.57,n1=20)  
 lower   effect   upper  
[1,] -1.037391 -0.57 -0.08981953 
 



 CI for d 
◦ A more general way, that works for most statistics, is to 

bootstrap 
 E.g., we can do this via a for loop in R 
 

◦ Depression Example: 
> dep_bs_d<-numeric(1000)  
> for (i in 1:1000) {  
>    samp<-sample(dep, replace=TRUE) 
>    dep_bs[i]<-(mean(samp)-10)/sd(samp) 
> }  
> quantile(dep_bs,c(.025,.975))  
  2.5%   97.5%  
  -1.0181445 -0.1685463 



 Confidence Intervals should be included for each 
effect of interest 

 Effect size values should be included for each effect 
of interest 
◦ Effect sizes must be scaled appropriately, given the 

measurement and the question of interest 
◦ The point estimate of the population effect size value 

should be independent of sample size 
◦ Effect size values should be accompanied with confidence 

intervals 
◦ Estimates of effect sizes values should have desirable 

estimation properties; namely, they should be: 
 unbiased (their expected values should equal the corresponding 

population values) 
 consistent (they should converge to the corresponding 

population value as sample size increases) 
 efficient (they should have minimal variance among competing 

measures) 
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