p-values Had a Good Run: A Primer on the 'New Statistics'

Rob Cribbie Quantitative Methods Program Department of Psychology York University

What's the plan ...

- We are going to scratch the surface in terms of modern issues related to data analysis in the behavioral sciences
- There will less of a focus on the actual methods used to conduct the analyses (i.e., the "how", and more of a focus on the "why", although we will also dabble in some applied work

Day One

- Part 1: History of Null Hypothesis Significance Testing
- Part 2: Problems with Null Hypothesis Significance Testing
- Part 3: Multiplicity Issue and Null Hypothesis Significance Testing

Part 1: History of NHST

- Modern Null Hypothesis Significance Testing can be traced back to:
 - Fisher's Significance Testing
 - Neyman-Pearson Hypothesis Testing

Fisher's Significance Testing

- Ronald Aylmer Fisher was a biologist and statistician
- He was the main force behind tests of significance and can be considered the most influential figure in modern data analytic techniques

Main Goal of Fisherian Testing

- The primary motivation behind Fisher's approach to significance testing was to find the probability of the data, given the null hypothesis
- Highlights
 - There is no alternative hypothesis
 - Power is of no interest
 - There is no alpha (α) level (a priori Type I error rate)

- Let's use as an example comparing two independent populations
 - Step 1: Select an appropriate test
 - Independent Samples t-test
 - Step 2: State H₀
 - $H_0: \mu_1 = \mu_2$
 - Could also be a directional hypothesis
 - E.g., $H_0: \mu_1 \ge \mu_2$
 - Could also test differences other than 0 (nil hypothesis)
 - E.g., H_0 : $\mu_1 \mu_2 = 5$ or H_0 : $\mu_1 \mu_2 \le 5$

- Step 3: Calculate the *p*-value, assuming H₀ is true
 - *p*-value: probability of finding a test statistic more extreme than that found, assuming H₀ is true

- Step 4: Statistical Decision
 - Is the *p*-value small enough to conclude that the results were highly unlikely if H₀ is true?
 - Typically made relative to some cutoff (e.g., .01, .05), however cutoffs need not be specified
 - What's important is that *p*-values of .049 and .051 are very similar probabilistically
 - Exact *p*-values are important since the magnitude of the probability is of utmost importance
 - The *p*-value provides information regarding the plausibility of H₀
 - Smaller *p*-values provide greater evidence against H₀

- Step 5: Interpret the Findings
 - If a result is deemed statistically significant, one of two statements is true
 - A rare mistake has occurred
 - H₀ does not accurately represent the true state of affairs
 - Non-significant results provide useful information, such as whether results were in the expected direction and the magnitude of the effects
 - Non-significant results can even provide information that can be used to strengthen support for H_0

Neyman and Pearson's Hypothesis Testing Approach

- Jerzy Neyman and Egon Pearson sought to improve Fisher's approach to statistical significance testing
- Their approach greatly expanded on the principles and procedures outlined by Fisher

Jerzy Neyman and Egon Pearson

Steps Involved in Neyman and Pearson's Hypothesis Testing

- Step 1: State the Research Hypothesis
 - State what result is expected, including the smallest meaningful effect size (MES)
 - This is used to establish appropriate hypotheses or conduct power analyses
- Step 2: Select an Appropriate Test Statistic
 - Note that since "power" is a concept in Neyman and Pearson, tests can be based on differences in power (e.g., parametric vs nonparametric)

Steps Involved in Neyman and Pearson's Hypothesis Testing

Step 3: State the Null Hypothesis

- Similar in nature to Fisher's H_0 (e.g., H_0 : $\mu_1 = \mu_2$)
- Power analyses based on MES should be conducted, such that the null includes inconsequential effects
 - In other words, important effects should be found with a high probability
- $\circ\,$ A new concept is the idea of an α level
 - Under Neyman-Pearson only a single α level is chosen, where Fisher was more flexible (concern was the magnitude of *p*)
- Also central to the Neyman–Pearson approach is the minimization of the risk of Type I errors (rejecting H₀ when it is true)

Steps Involved in Neyman and Pearson's Hypothesis Testing

- ▶ Step 4: State the Alternate Hypothesis (H_A)
 - The concept of H_A is novel under the Neyman-Pearson approach
 - $H_a: \mu_1 \neq \mu_2$
 - The presence of H_A permits power analyses and introduces the concept of a Type II error (β , not rejecting H_0 when it is false)
 - Neyman and Pearson proposed 20% (β = .20) as an upper ceiling for β , and the value of alpha (β = α) as its lower floor

Neyman-Pearson Hypothesis Testing

		THE TRUTH	
		The null hypothesis	The null hypothesis
		(H _o) is true	(H _o) is not true
		(H, is false)	(H, is true)
	Reject H _o	TYPE I (α) error/	Correct Decision
		Alpha Risk/	(1 - β)
	(support H _a)	p – value	
THE DECISION THE NALYST MAKES			Power of the test
		Overreacting	
		$(1 - \alpha) =$ the Confidence	
		level of the test	
	Fail to Reject H _o	Correct Decision	TYPE II (β) error/
			Beta Risk
	(do not support Ha)		
			Underreacting

Smallest Meaningful Effect Size, Power and the Null Hypothesis

Ho

Steps Involved in Neyman and Pearson's Hypothesis Testing

- Step 5: Conduct a Power Analysis
 - What sample size is required to ensure that β < .20 (1 β = .80)?
 - There is no reason to conduct a low-power study (i.e., 1- β < .80)
 - β should fall between α and .20
 - If it is desired to have β less than α, than the hypotheses should be reversed (N&P)
 - Controlling for errors in the long run is very important!

Steps Involved in Neyman and Pearson's Hypothesis Testing

Step 6: Determine the Critical Value for the Test Statistic

Steps Involved in Neyman and Pearson's Hypothesis Testing

- Step 7: Compare the test statistic to the critical value or the *p*-value to α
- Step 8: Make a decision regarding H_0/H_a
 - Reject or retain H₀
 - Unlike Fisher, the hypothesis decision is most important, not the magnitude of the *p*-value
- To summarize, the Neyman-Pearson approach emphasizes a priori decisions, including MES, error rates, power/sample size, etc., and focuses more on decisions regarding hypotheses than the magnitude of *p*-values

Modern NHST

- Modern null hypothesis significance testing borrows from both Fisher and Neyman– Pearson
 - Procedurally, most researchers follow Neyman– Pearson
 - Philosophically, however, many researchers are more in favour of Fisher's approach in terms of evaluating evidence against H₀ through quantifying the magnitude of the *p*-value

Discussion Point

If you had to choose one of the methods as the primary method for your field, which would it be?