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Abstract 

A common question of interest to researchers in Psychology is the equivalence of two or more 

groups. Failure to reject the null hypothesis of traditional null hypothesis tests such as the 

ANOVA F-test (i.e., Ho: μ1 = … = μk) does not imply the equivalence of the population means. 

Researchers interested in determining the equivalence of k independent groups should apply a 

one-way test of equivalence (e.g., Wellek, 2003). The goals of this study were to investigate the 

robustness of the one-way Wellek test of equivalence to violations of homogeneity of variance 

assumption, and compare the Type I error rates and power of the Wellek test with a 

heteroscedastic version of which was based on the logic of the one-way Welch (1951) F-test. 

The results indicate that the proposed Wellek-Welch test was insensitive to violations of the 

homogeneity of variance assumption, whereas the original Wellek test was not appropriate when 

the population variances were not equal. 
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Robust Tests of Equivalence for k Independent Groups 

Researchers often want to evaluate whether two or more independent groups are 

equivalent. For example, Mead and Drasgow (1993) wanted to find if writing the paper and 

pencil version of the GRE was equivalent to writing the electronic test. Barker, Luman, 

McCauley and Chu (2002) were interested in evaluating whether or not immunization coverage 

is equivalent across different cultural groups. In another example, Mueller, Leibig and Hattrup 

(2007) did a study to investigate the psychometric equivalence of computerized and paper and 

pencil job satisfaction measures.  

Researchers often mistake non-rejection of the null hypothesis with traditional tests (i.e., 

Ho: μ1 = μ2 = … = μk, i = 1, … , k) for equivalence; in other words a lack of evidence to declare 

the groups different does not imply that they are equivalent. The rapidly expanding field of 

equivalence testing is starting to make this point more salient with researchers in psychology 

(e.g., Rogers, Howard, & Vessey, 1993; Seaman & Serlin, 1998). Although traditional tests and 

tests of equivalence sometimes agree (e.g., the treatment means are deemed not statistically 

different using traditional null hypothesis testing, and are deemed equivalent with a test of 

equivalence), since difference- and equivalence-based tests are examining different hypotheses, 

it also common that the treatment means are deemed not statistically different using traditional 

null hypothesis testing, but are not deemed equivalent with a test of equivalence, or that the 

treatment means are deemed statistically different using traditional null hypothesis testing, but 

are deemed equivalent using an equivalence test. More specifically, a traditional test of 

differences would be inappropriate in this situation because: 1) As sample sizes increase the 

likelihood of finding significant differences with a traditional test increases, whereas the 
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probability of finding no significant difference decreases. Thus, if a researcher was interested in 

finding the groups equivalent using a traditional test of differences, then power would be 

maximized by using the minimum number of subjects. In other words, power and sample size, 

which in a proper null hypothesis testing environment should be directly related, are instead 

inversely related; and 2) Non-rejection of the null hypothesis associated with a traditional test of 

differences does not prove that the null hypothesis is true (only that it cannot be rejected). To 

summarize, a traditional test of differences cannot be used to answer questions relating to the 

equivalence of groups, and instead, as discussed below, researchers should adopt tests of 

equivalence.  

Equivalence of Multiple Groups 

Often researchers are interested in evaluating the equivalence of multiple independent 

groups. For example, a researcher may want to know if three or more different treatments for 

depression are equally effective. For example, in Barker et al.’s (2002) study discussed above, 

researchers set out to assess the equivalence of  early childhood immunization coverage by 

different ethnic groups (Whites, Blacks, Hispanics, and Asians). Two popular options for 

evaluating the equivalence of multiple independent groups are a simultaneous test of equivalence 

or multiple pairwise tests of equivalence. Cribbie et al. (2010) recommend the use of Wellek’s 

(2003) one-way test of equivalence for assessing the equivalence of multiple independent groups, 

instead of using multiple pairwise tests of equivalence, since the pairwise tests are overly 

conservative for assessing the simultaneous equivalence of all groups. In other words, Type I 

error rates are more accurate and power is higher when using a simultaneous test of the 

equivalence of k groups, such as that proposed by Wellek (2003), than if a researcher were to 

conduct all pairwise tests of equivalence. 
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Wellek’s One-Way Test of Equivalence 

Wellek’s (2003) one-way test of equivalence tests the null hypothesis Ho: 𝜑2 ≥  𝜀2 

against the alternative Ha: 𝜑2 <  𝜀2, with 𝜀 representing the equivalence interval and: 

𝜑2 =
∑ (

𝑛𝑖
�̅�

)𝑘
𝑖=1  (�̅�𝑖−�̅�.)

2

𝜎2
. 

�̅� stands for the mean sample size of the groups, �̅�𝑖 is the sample mean of the ith group, �̅�. is the 

average of the sample means for the k groups, and 𝜎2 is the average within group variability. If 

the combined difference between all the groups falls within the equivalence interval, then the 

researcher rejects the null hypothesis. The estimator of 𝜑2, �̂�2, incorporates the standard error 

from the fixed effects ANOVA F test: 

�̂�2 =
∑ (

𝑛𝑖
�̅�

)𝑘
𝑖=1 (�̅�𝑖−�̅�..)

2

(𝑁−𝑘)−1 ∑ ∑ (𝑥𝑖𝑣−�̅�𝑖)2𝑛𝑖
𝑣=1

𝑘
𝑖=1

. 

Ho is rejected if �̂�2 < 𝜑𝑐𝑟𝑖𝑡, where:  

𝜑𝑐𝑟𝑖𝑡 = (
𝑘−1

�̅�
) 𝐹𝑘−1,𝑁−𝑘; ∝(�̅�𝜀2) . 

𝐹𝑘−1,𝑁−𝑘,∝(�̅�𝜀2) is the lower 100α-percentage point of a noncentral F with k-1 and N-k degrees of 

freedom, where N is the total sample size and the noncentrality parameter is �̅�𝜀2.  

Wellek-Welch: A Heteroscedastic Wellek Procedure 

A common problem that researchers encounter when conducting the Wellek one-way test 

of equivalence is that the assumption of variance homogeneity is violated. In fact, numerous 

studies have found that variances are often extremely different across independent groups (e.g., 

Golinski & Cribbie, 2009; Keselman et al., 1998).  
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The Welch procedure (1951), an alternative to the traditional one-way ANOVA F-test, 

does not require that the variances of the populations are equal. The Welch test can be 

represented by: 

𝐹′ =  
∑ 𝑤𝑘(�̅�𝑘−�̅�.

′)2

𝑘−1

1+ 
2(𝑘−2)

𝑘2−1
∑(

1

𝑛𝑘−1
)(1−

𝑤𝑘
∑ 𝑤𝑘

)
2 , 

where 𝑤𝑘 =
𝑛𝑘

𝑠𝑘
2 , �̅�.

′ =
∑ 𝑤𝑘�̅�𝑘

∑ 𝑤𝑘
, nk is the size of the kth group, sk

2
 is the variance of the kth group, 

and �̅�𝑘 is the mean of the kth group. 

The traditional F statistic can be computed from the �̂�2 statistic as 𝐹 =  �̂�2 (
�̅�

𝑘−1
). 

Following that logic, the estimator of the new proposed statistic �̂�2′ (Wellek-Welch) can be 

defined as: 

�̂�2′ = 𝐹′ (
𝑘−1

�̅�
). 

The 𝐹′ statistic is approximately distributed as F with k – 1 numerator degrees of freedom and 

𝑑𝑓′ denominator degrees of freedom where: 

𝑑𝑓′ =
𝑘2−1

3 ∑(
1

𝑛𝑘−1
)(1−

𝑤𝑘
∑ 𝑤𝑘

)
2. 

 The Wellek-Welch one-way test of equivalence, as with the original test, tests the null 

hypothesis Ho: 𝜑2 ≥  𝜀2 against the alternative Ha: 𝜑2 <  𝜀2, and Ho is rejected if �̂�2′ <  𝜑𝑐𝑟𝑖𝑡′, 

where: 

 

𝜑𝑐𝑟𝑖𝑡′ = (
𝑘−1

�̅�
) 𝐹′𝑘−1,𝑑𝑓′; ∝(�̅�𝜀2)  
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Method 

A simulation study was used to compare the performance of the Wellek one-way 

equivalence test (Wellek, 2003) with that of the heteroscedastic Wellek-Welch equivalence test. 

Wellek (2003) suggests setting the tolerance (equivalence interval) ε = 0.36/√2  0.25 for strict 

equivalence criterion, and ε = 0.74/√2  0.50 for a liberal equivalence criterion. In this study, 

power conditions were investigated for both ε = .25 and ε = .50. Several variables were 

manipulated in the study including: 1) number of groups, 2) sample size equality/inequality, 3) 

population variance equality/inequality, 4) pairings of unequal sample sizes and variances; and 5) 

population means.  

We assessed the robustness of the Wellek and Wellek-Welch tests with four and seven 

independent groups. Four and seven groups were expected to span commonly encountered 

situations in psychological research. Group sample sizes were equal, slightly unequal, or highly 

unequal. The population variances of the groups were also set to be equal, slightly unequal, or 

highly unequal. Note that for both the four and seven group conditions that the average group 

size was set to 50 and the average population variance was set to 10. Unequal sample sizes and 

variances were both positively (or directly) paired (smallest sample sizes paired with smallest 

variances and largest sample sizes paired with largest variances) and negatively (or inversely) 

paired (smallest sample sizes paired with largest variances and largest sample sizes paired with 

smallest variances). Table 1 provides a detailed summary of the sample size and variance 

conditions used in the Monte Carlo study.  
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The means of the groups were either all set to zero, or equally spaced apart. In order to 

evaluate Type I error rates, it was necessary to set the noncentrality parameter for the population 

F distribution equal to the noncentrality parameter for the critical distribution. Although Type I 

error rates for traditional tests of difference are evaluated when the population and critical F 

distributions are both central F distributions, for equivalence testing a null population 

distribution is actually a power condition (i.e., the population means are all equal), and thus in 

order to evaluate Type I error rates for k independent groups, the nonnull population distribution 

needs to be set to be equal to the nonnull critical F distribution. In this study, that was 

established by setting the population means for k = 4 and ε = .25 (using equal spacing) at µ4j = 

{0, .354, .708, 1.062}, and for k = 4 and ε = .5 the population means were set at 2*µ4j. Similarly, 

for k = 7 and ε = .25, µ7j = {0, .149, .298, .447, .596, .745, .894} and for k = 7 and ε = .5, the 

population means were set at 2*µ7j. It is important to note that the noncentrality parameter for 

the Welch test (and hence the Wellek-Welch) differs from that for the traditional F (and hence 

Wellek F), by incorporating information about the ratio of the sample sizes and variances (see 

Levy, 1978). Thus, slight differences between the population means used for assessing the Type 

I error rates of the Wellek and Wellek-Welch tests occurred in order to ensure that the 

noncentrality parameter of the population F distribution for the Wellek-Welch was equal to that 

of the noncentrality parameter of the critical F distribution. In order to investigate power, the 

population means were all set equal to zero, or were evenly spaced such that the noncentrality 

parameter for the population distributions was less than that for the critical distributions. For k = 

4, the population means were set at µ1 = 0, µ2 = .25, µ3 = .5, µ4 = .75, and for k = 7, the 

population means were set at µ1 = 0, µ2 = .10, µ3 = .20, µ4 = .30, µ5 = .40, µ6 = .50, µ7 = .60.  



ROBUST TESTS OF EQUIVALENCE FOR K INDEPENDENT GROUPS                                                                     9 
 

Five thousand simulations were performed for each condition using R version 2.12.1 (R 

Development Core Team, 2010). A nominal α level of .05 was used for all analyses.  

 

Results 

The pattern of results for k = 4 and k = 7, and for ε = .25 and ε = .50, were identical and 

therefore only the results for k = 4 and ε = .50 are presented. Complete tabulated results are 

available from the authors. For all power conditions it is important to note that if the empirical 

Type I error rates are not controlled within a reasonable bounds around α, then the power results 

are not interpretable because the test is not robust to violations of the assumptions under those 

conditions. For this study a test was considered to be robust if its empirical Type I error rate fell 

within α - .2α (.04) and α + .2α (.06). These bounds fall between the liberal and conservative 

bounds proposed by Bradley (1978).  

Type I Error Rates 

 Type I error rates for the Wellek and Wellek-Welch test for ε = .50 and k = 4 are presented 

in the first two rows of Figure 1. The Wellek-Welch test had Type I error rates that fell within 

the robustness criteria across all conditions (rates ranged from .042 to .058). However, the Type I 

error rates of the Wellek one-way test of equivalence depended strongly on the pairings of the 

unequal sample sizes and variances. For example, when k = 4 and extremely unequal variances 

and sample sizes were positively paired, the Type I error rates exceeded 10%, more than double 

the nominal rate. Further, when unequal variances and sample sizes were negatively paired, Type 

I error rates were biased downwards to as low as 3%.  

Power – All Means Equal  
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The power rates for the Wellek and Wellek-Welch tests for ε = .50, k = 4 and equal 

means are presented in the second row of Figure 1. The Wellek-Welch test had power rates that 

were consistent across all conditions (approximately .82). However, the power of the Wellek 

one-way test of equivalence depended strongly on the pairings of the unequal sample sizes and 

variances. For example, although the power of the Wellek test with equal variances or sample 

sizes was constant at about .82, when extremely unequal variances and sample sizes were 

positively paired the power rates were inflated to approximately .9, and when the unequal 

variances and sample sizes were negatively paired the power rates were deflated to 

approximately .65.  

Power - Unequal Means 

The power rates for the Wellek and Wellek-Welch tests for ε = .50, k = 4 and unequal 

means are presented in the third row of Figure 1. It is important to point out that although the 

means are unequal, the noncentrality parameter for the population mean differences does not 

exceed that of the critical value and therefore the null hypothesis (Ho: 𝜑2 ≥  𝜀2) is false and this 

is a power condition for a test of equivalence. When the means were unequal, the power rates, as 

expected, were reduced because the difference in the means was closer to the equivalence 

interval than when all the means were equal. The Wellek-Welch power rates, as with the equal 

means conditions, were generally consistent across all conditions. The only exception was that 

the power of the Wellek-Welch was slightly lower in the unequal variance conditions. This is 

due to the fact that the Wellek-Welch is sensitive to the pairings of the condition sample sizes, 

variances, and means; in other words, differences between the sample means and the grand mean 

are weighted, where the weighting reflects the ratio of the sample sizes to the variances. As an 

example, consider a situation in which k = 4, the sample sizes are all 50, the variances are all 10, 
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and the means are 0,.2,.4,.6 (this replicates the equal variance condition from Figure, but here 

assuming the values are sample statistics). With this data �̂�2′ = .017. Now consider that 

everything else stays the same but the sample sizes are 20,40,60,80 and the variances are 

2.5,5,12.5,20 (this replicates the extremely unequal sample sizes and variances condition from 

Figure 1, but again we will assume that values are sample statistics). In this case �̂�2′ = .019. 

Even though the mean differences stay the same and the average sample size and variance do not 

change, the value of �̂�2′ is increased slightly which leads to the small decreases in power. 

However, there are two important conclusions to consider: 1) the decreases in power, even with 

extremely unequal sample sizes and variances, were almost always less than .05; and 2) the 

Wellek-Welch is not affected by the pairings of the group sample sizes and variances and 

provides a consistent level of power at each level of variance inequality.  

On the other hand, the original Wellek test was again strongly affected by the pairings of 

the sample sizes and variances. For example, the Wellek test had power rates between 

approximately .63 and .65 with equal sample sizes, but when extremely unequal variances and 

sample sizes were positively paired the power rates were inflated to approximately .80, and when 

the unequal variances and sample sizes were negatively paired the power rates were deflated to 

below .50.  

 

Discussion 

 When researchers want to assess the equivalence of multiple groups, they should conduct 

one-way tests of equivalence instead of using the nonsignificance of a traditional difference 

based test or conducting multiple pairwise tests of equivalence. Wellek (2003) proposed a one-

way test of equivalence, although this test is limited by the fact that it relies on the assumption of 
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variance homogeneity. In this paper we propose a novel heteroscedastic one-way test of 

equivalence, entitled the Wellek-Welch test.  

 The results of this study demonstrate that the proposed Wellek-Welch test consistently 

outperformed the Wellek one-way test of equivalence when the assumption of homogeneity of 

variance was violated. More specifically, the Type I error rates of the Wellek-Welch were very 

consistent and fell between .04 and .06 (for α = .05) under all conditions, whereas the Type I 

error rates of the Wellek test were biased upwards or downwards depending on the pairings of 

the sample sizes and variances. When larger sample sizes were paired with smaller variances 

(and hence smaller sample sizes were paired with larger variances), the Type I error rates for the 

Wellek test were deflated. On the other hand, when larger sample sizes were paired with larger 

variances (and hence smaller sample sizes were paired with smaller variances), the Type I error 

rates for the Wellek test were inflated. It is interesting to point out that these results are in the 

opposite direction to empirical Type I error rates when a traditional test of differences (e.g., 

ANOVA F) is applied when sample sizes and variances are unequal, because in the case of the 

traditional test a researcher is looking for an F value larger than the critical value (whereas with 

equivalence testing a researcher is looking for a test statistic smaller than the critical value). 

Within the current equivalence testing environment (using the Wellek test), when a larger sample 

size is paired with a larger variance that larger variance gets weighted higher (than variances 

associated with smaller sized groups) which increases the standard error and reduces the size of 

the test statistic (resulting in more declarations of equivalence).   

 With respect to power, and as expected given the Type I error results, the rates for the 

original Wellek test depended strongly on the combinations of the sample sizes and variances, 

whereas the power rates for the Wellek-Welch were generally consistent across sample size and 
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variance conditions. In fact, since the Type I error rates of the Wellek-Welch, but not those of the 

original Wellek, are accurate across all combinations of equal and unequal sample sizes and 

variance, and the power of the Wellek-Welch is at least as high as the Wellek when variances are 

equal, there does not appear to be any situation in which the Wellek test outperforms the Wellek-

Welch.   

 To conclude, one-way tests of equivalence should be used when trying to demonstrate the 

equivalence of the means of multiple groups. Whereas difference testing is appropriate for 

questions concerning disparity between group means, equivalence testing should be used to 

answer questions regarding the equivalence of group means. It is also possible that other 

strategies (e.g,. Bayesian approaches, see Wellek, 2003) will be appropriate, depending on the 

nature of the research question and the desired outcome. However, the results of this study 

indicate that researchers should routinely adopt the Wellek-Welch test for conducting one-way 

tests of equivalence as it maintains accurate Type I error rates and consistent power when sample 

sizes and variances are equal or unequal. 
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Table 1 

Summary of conditions investigated in the Monte Carlo study.  

 
 
k  ni    σi

2    ε 
 
4  50, 50, 50, 50   10, 10, 10, 10   .25 
  35, 45, 55, 65   4, 8, 12, 16   .50 
  20, 40, 60, 80   2.5, 5, 12.5, 20   
  65, 55, 45, 35   
  80, 60, 40, 20 
 
7  50, 50, 50, 50, 50, 50, 50 10, 10, 10, 10, 10, 10, 10 .25 
  35, 40, 45, 50, 55, 60, 65 4, 6, 8, 10, 12, 14, 16  .50 
  20, 30, 40, 50, 60, 70, 80 2.5, 4, 7, 10, 14, 17, 20 
  65, 60, 55, 50, 45, 40, 35   
  80, 70, 60, 50, 40, 30, 20 
 
 
Note: k represents the number of groups; ni represents the group sample sizes; σi

2 represents 

the population variances, and ɛ represents the equivalence interval. 
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Figure 1.Type I Error Rates and Power for Evaluating Equivalence with the Wellek and Wellek-

Welch Test Statistics for k = 4 and ε = .50. 


