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 Specialized Tests for Detecting
 Treatment Effects in the
 Two-Sample Problem

 H. J. KESELMAN
 ROBERT CRIBBIE
 University of Manitoba

 BRUNO D. ZUMBO
 University of Northern British Columbia

 ABSTRACT. Nonparametric and robust statistics (those using trimmed means and
 Winsorized variances) were compared for their ability to detect treatment effects in
 the 2-sample case. In particular, 2 specialized tests, tests designed to be sensitive to
 treatment effects when the distributions of the data are skewed to the right, were com
 pared with 2 nonspecialized nonparametric (Wilcoxon-Mann-Whitney; Mann &
 Whitney, 1947; Wilcoxon, 1949) and trimmed (Yuen, 1974) tests for 6 nonnormal dis
 tributions that varied according to their measures of skewness and kurtosis. As
 expected, the specialized tests provided more power to detect treatment effects, par
 ticularly for the nonparametric comparison. However, when distributions were sym

 metric, the nonspecialized tests were more powerful; therefore, for all the distribu
 tions investigated, power differences did not favor the specialized tests. Consequently,
 the specialized tests are not recommended; researchers would have to know the
 shapes of the distributions that they work with in order to benefit from specialized
 tests. In addition, the nonparametric approach resulted in more power than the
 trimmed-means approach did.

 IT IS WELL KNOWN that the usual group mean and variance, which are the

 basis for the traditional tests of significance for treatment-group equality, are
 greatly influenced by the presence of extreme observations in a distribution of
 scores. In particular, the standard error of the usual mean can become seriously
 inflated when the underlying distribution has heavy tails, a situation likely to be
 encountered with education and psychological data.

 Two alternative strategies for assessing treatment effects are nonparametric
 methods (see Penfield, 1994) and the use of robust estimators (see Wilcox,

 355

This content downloaded from 130.63.0.131 on Wed, 07 Jun 2017 14:47:26 UTC
All use subject to http://about.jstor.org/terms
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 1995a, 1995b). In addition, for each of these strategies there are test statistics that

 are intended to increase one's ability to detect treatment effects when underlying
 distributions are skewed. For nonparametric methods, there are specialized tests
 (two-sample) that are appropriate for assessing treatment-group equality when
 data are skewed (see Berry, 1995; Hogg, Fisher, & Randies, 1975; Randies &

 Wolfe, 1979). With robust estimators, in particular, trimmed means and Win
 sorized variances, asymmetric trimming of the data is expected to provide in
 creased sensitivity to detect treatment effects.

 In the present study, we compared four test statistics appropriate for examin
 ing treatment-group location equality in the two-sample problem. In particular,

 we evaluated (a) the Wilcoxon-Mann-Whitney rank sum test (WILC; Wilcoxon,
 1949; Mann & Whitney, 1947), (b) a nonparametric test specialized "to detect a
 location difference between two distributions that are otherwise identical and

 skewed right" (RSKEW; Berry, 1995, p. 41), and (c)/(d) two versions of Yuen's
 (1974) modification of the Welch (1938) test with trimmed means and Win
 sorized variances (YUEN; see Wilcox, 1995a, 1995b; Yuen, 1974). To date, no
 researchers have examined the extent to which the specialized tests increase
 one's ability to detect nonnull treatment effects.

 Definition of the Test Statistics

 Suppose n} independent random observations X;j, X/2, . . . , Xin. are sampled
 from population j (j = 1, 2). We assume that the X/,-s are obtained from a nor
 mal population with mean ji, and unknown variance a/, with Gj2 = a22- Then,
 let Xj = YuiXijInj and sf = Z,-(X// - XjfKjij - 1), where X, is the estimate of \ij and
 sf is the usual unbiased estimate of the variance for population j.

 The definition of the Wilcoxon-Mann-Whitney test has been presented in
 many sources and will not be repeated here. Readers can refer to Marascuilo and
 McSweeney (1977; see also Penfield, 1994). The RSKEW test is described in
 Berry (1995, p. 41; see also Hogg et al., 1975; Randies & Wolfe, 1979). Although
 the Welch (1938) test also has been defined many times in the literature, we
 repeat its definition here so that its use with trimmed means and Winsorized vari

 ances is explicitly delineated.
 The statistic presented by Welch (1938) for testing the null hypothesis H0: |ii =

 (ll2 in the presence of variance heterogeneity is

 _Xl-X2-(\il-\i2)

 y nx n2

 where error degrees of freedom (v) are obtained from
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 v =_V"' "i)_ (2)
 nx-\ n2-\

 It is well known that the usual group mean and variance, which are the basis
 for the previously described procedure, are greatly influenced by the presence of
 extreme observations in a distribution of scores. In particular, the standard error
 of the usual mean can become seriously inflated when the underlying distribu
 tion has heavy tails. Accordingly, adopting a nonrobust measure "can give a dis
 torted view of how the typical individual in one group compares to the typical
 individual in another, and about accurate probability coverage, controlling the
 probability of a Type I error, and achieving relatively high power" (Wilcox,
 1995a, p. 66). By substituting robust measures of location and scale for the usual

 mean and variance, one should be able to obtain a test statistic that is insensitive

 to nonnormality.

 Although a wide range of robust estimators have been proposed in the litera
 ture (see Gross, 1976; Lind & Zumbo, 1993), the trimmed mean and Winsorized
 variance are intuitively appealing because of their computational simplicity and
 good theoretical properties (Wilcox, 1995a). The standard error of the trimmed
 mean is less affected than the usual mean by departures from normality because
 extreme observations, that is, observations in the tails of a distribution, are cen
 sored or removed. Furthermore, as Gross (1976) noted, "The Winsorized vari
 ance is a consistent estimator of the variance of the corresponding trimmed
 mean" (p. 410). When the Winsorized variance is computed, the most extreme
 observations are replaced with less extreme values in the distribution of scores.

 However, these measures should be adopted only if the researcher is interest
 ed in testing for treatment effects across groups by using a measure of location
 that more accurately reflects the typical score within a group when working with
 heavy-tailed distributions. The hypothesis tested when the usual mean is used as
 an estimate of location is not the same as that tested when the trimmed mean is

 used. When trimmed means are being compared, the null hypothesis pertains to
 the equality of population trimmed means, that is, the juts. That is, H0J: jnti = jut2,
 (HA,: |Xt! * |it2).

 The prevalent method of trimming is to remove outliers from each tail of the
 distribution of scores. However, asymmetric trimming has been theorized to be
 potentially advantageous when the distributions are known to be skewed, a situ
 ation likely to be realized with behavioral science data (see De Wet & van Wyk,
 1979; Micceri, 1989; Tiku, 1980, 1982; Wilcox, 1994, 1995b).

 Let X(d7 < X(2)7 < ... < X{npj represent the ordered observations associated with

This content downloaded from 130.63.0.131 on Wed, 07 Jun 2017 14:47:26 UTC
All use subject to http://about.jstor.org/terms



 358  The Journal of Experimental Education

 they'th group. When trimming asymmetrically, let gj = [ya rij], where ya represents
 the proportion of trimming in the longer tail and [x] is the greatest integer < x.

 The effective sample size for the 7th group is hj = n? - gj. Assuming that the dis
 tribution is positively skewed so that trimming takes place in the upper tail, the
 y'th sample trimmed mean is

 hj ,.,

 and they'th sample Winsorized mean is

 *w, = fH (4)
 where

 Yij - X? if Xij < X(nj - gj)j -

 = X(?j - 8j)j ?f XU - X("j - 8j)J

 When trimming symmetrically, let gj = [ysnj], where ys represents the propor
 tion of observations that are to be trimmed in each tail of the distribution. The

 effective sample size for the jth group becomes hj = nj - 2gj. Under symmetric
 trimming, the 7th sample trimmed mean is

 XtJ = j- ?V (5) hj ?=gj+i

 The statistic Xw/ is computed by using Equation 4, but here

 YU = X(8j + IV ?f XU - X(8j + IV

 = Xij if X(gj +l)j< Xij < X{n. _ gj)j

 = X{n. _ gj)j if Xij > x(n. _ gj)j.

 For both asymmetric and symmetric trimming, the sample Winsorized variance
 is

 4;=7r-r?(n--^)2- (6) ^.-li=i

 Yuen (1974) suggested that trimmed means and Winsorized variances be used
 in conjunction with Welch's (1938) statistic. For heavy-tailed symmetric distri
 butions, Yuen pointed out that the statistic based on trimmed means and Winsor
 ized variances could adequately control the rate of Type I errors and resulted in
 greater power than a statistic based on the usual mean and variance. Under robust
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 estimation, the trimmed sample means and Winsorized sample variances were
 substituted into Equations 1 and 2. Accordingly, Yuen's statistic is

 xtl-xl2-(n?-n,2) nd
 2 2

 %! ! %2

 v U *2 J
 Y (4i/^)2 , (42/^)2

 A,-l ?2-1
 Throughout the remainder of this article, Yuen's (1974) statistic, which is based
 on asymmetric and symmetric trimming, will be notated as YUEN(A) and
 YUEN(S), respectively.

 Method

 Sample size was set at eight per group; that is n\ = n2 - 8. Thus, for symmet
 ric trimming there were six observations per group, whereas for asymmetric
 trimming there were seven observations per group. Sample size had to be restrict
 ed to this number because the amount of mainframe computer time required to
 perform a simulation was prohibitive because of the permutation tests.
 We manipulated three variables in the study: (a) population distribution, (b)

 magnitude of the nonnull treatment effects, and (c) type of trimming with skewed
 distributions. In the current investigation, devoted primarily to exploring power
 differences between the tests, population variances were equal.
 With respect to the effects of distributional shape, we chose to investigate con

 ditions in which the data were obtained from a wide variety of nonnormal distri
 butions. In addition to generating data from %32 and %62 distributions, we also
 used the method described in Hoaglin (1985) to generate distributions with more
 extreme degrees of skewness and kurtosis. We selected these particular types of
 nonnormal distributions because education and psychological research data typ
 ically have skewed distributions (Micceri, 1989; Wilcox, 1994). Furthermore,
 Sawilowsky and Blair (1992) investigated the effects of eight nonnormal distri
 butions identified by Micceri on the robustness of Student's t test and found that
 only distributions with the most extreme degree of skewness that were investi
 gated (e.g., Yi = 164) affected the Type I error control of the independent sample
 t statistic. Thus, because the statistics we investigated had operating characteris
 tics similar to those reported for the t statistic, we felt that our approach to mod
 eling skewed data would adequately reflect conditions in which those statistics
 might perform optimally. For the %32 distribution, skewness and kurtosis values

 (7)

 (8)
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 were yx = 1.63 and y2 = 4.00, respectively. We included the %62 distribution in our
 investigation to examine the effects of sampling from a distribution with moder
 ate skewness. For this distribution, yi = 1.16 and y2 = 2.00. The other types of
 nonnormal distributions were generated from the g- and /^-distributions (Hoaglin,
 1985). Specifically, we investigated four nonnormal g- and /z-distributions; Table
 1 contains an enumeration of the investigated distributions as well as measures
 of skewness and kurtosis. To give meaning to the values contained in Table 1, we
 note that for the standard normal distribution, g = h = 0. Thus, when g = 0a dis
 tribution is symmetric and the tails of a distribution become heavier as h increas
 es in value. Finally, although the selected combinations of g and h result in
 extremely skewed distributions, according to Wilcox (1994), these values are
 representative of psychometric measures.

 The second variable manipulated was the magnitude of nonnull treatment ef
 fects. In particular, we chose three cases. We selected mean values such that the a
 priori power to detect differences in the two samples (based on the noncentrality
 parameter for the two-sample t test) would be .40, .60, or .80. That is, we intended
 to explore whether the specialized tests would outperform the usual test statistics
 when there were small, medium, or large differences between the two samples.

 The third variable manipulated in this investigation for the test (YUEN) that in
 volved trimming was the type of trimming in asymmetric distributions. When the
 simulated data were skewed, we investigated both symmetric and asymmetric trim

 ming. Asymmetric trimming has been recommended by Tiku (1980,1982) and oth
 ers (e.g., see De Wet & van Wyk, 1979) for nonsymmetric skewed distributions as
 a means of reducing the effects of deviant observations in the longer tail. When
 trimming asymmetrically, we trimmed 20% from the longer tail of each group's set

 of scores. For symmetric trimming, we removed 20% of the observations from
 each tail of a group's set of scores (see Rosenberger & Gasko, 1983; Wilcox, 1994,
 1995a, 1995b). This rule is based in part on optimizing power for nonnormal as

 well as normal distributions (see Wilcox, 1994, 1995a, 1995b).

 TABLE 1
 Distributions Investigated and Their Properties

 Distribution Skewness Kurtosis

 g = 0/h = 0 0.00 0.00
 g = 0/h = .2 0.00 36.00
 Chi-square (6) 1.16 2.00
 Chi-square (3) 1.63 4.00
 g=l/h = 0 6.20 114
 g = 0/h = .5 0.00 ?
 2 = \lh = .5 - ?

 Note. Cells notated with ? indicate an undefined value.
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 To generate pseudo-random normal vari?tes, we used the SAS generator
 RANNOR (SAS Institute, 1989). If Z{j is a standard normal var?ate, then Xtj =
 [ij + Gj x Zij is a normal var?ate with mean equal to jo, and variance equal to a/.

 To generate pseudo-random vari?tes having a chi-square distribution with
 three (six) degrees of freedom, we squared and summed three (six) standard nor

 mal vari?tes. The vari?tes were standardized and then transformed to %32 or %62
 vari?tes having mean (Lt, (when comparing the tests based on the least squares
 estimates) or [itj (when comparing the tests based on trimmed means) and vari
 ance Gj1 (see Hastings & Peacock, 1975, pp. 46-51, for further details on the gen
 eration of data from these distributions).

 To generate data from g- and /i-distributions, standard unit normal variables
 (Z) were converted to the random variable

 exp(gZ^)-! i Xu=-exp hZ{l
 2\

 according to the values of g and h selected for investigation. To obtain a distribu

 tion with standard deviation q,-, we multiplied each X^ (j = 1, . . . , /) by a value
 of Gj. This operation does not affect the value of the null hypothesis when g = 0
 (see Wilcox, 1994, p. 297). However, when g > 0, the population mean for a g
 and /z-distributed variable is

 ^ g(\-hr{ }
 (see Hoaglin, 1985, p. 503). Thus, for those conditions where g > 0, \igh was first
 subtracted from X?j before being multiplied by Gj. When we were working with
 trimmed means, we first subtracted \xtj from each observation.
 We performed 1,000 replications of each condition, using a .05 significance

 level. We performed this number of replications because the two nonparametric
 tests, which were based on permutations of the data, required 18 hr per condition
 to execute on a mainframe computer. Type I error and power rates were comput
 ed within each condition examined. Type I rates were collected when the null
 hypothesis of no treatment effects was true, whereas power rates were assessed
 when treatment effects existed between the two groups.

 Results

 Table 2 contains Type I error (a priori power = 0) and power rates (a priori
 power = .4, .6, and .8) for the four test statistics when sampling from the seven
 empirical distributions. We show the Type I error rates to assure the reader that
 power rates were not being compared under conditions in which the tests were
 unable to maintain Type I error control (see Penfield, 1994). Indeed, as expect
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 TABLE 2
 Empirical l^pe I Error and Power Rates (nx = n2 = 8)

 Distribution  Power  WILC  RSKEW  YUEN(A)  YUEN(S)

 g = 01 h = 0

 g = 0/h = .2

 Chi-square (6)

 Chi-square (3)

 g=\/h = 0

 g = 0/h = .5

 g=l/h = .5

 0
 .4
 .6
 .8

 P-mean

 0
 .4

 P-mean

 0
 .4
 .6
 .8

 P-mean

 0
 .4
 .6
 .8

 P-mean

 0
 .4
 .6
 .8

 P-mean

 0
 .4
 .6
 .8

 P-mean

 0
 .4
 .6
 .8

 P-mean

 G-mean

 .042
 37
 57
 77
 57

 .042
 30
 45
 61
 45

 .045
 47
 68
 78
 64

 .055
 51
 67
 82
 67

 .042
 37
 54
 65
 52

 .042
 23
 35
 47
 35

 .042
 26
 35
 47
 36

 51

 .035
 28
 44
 62
 45

 .035
 22
 34
 47
 34

 .041
 47
 71
 86
 68

 .050
 60
 78
 90
 76

 .035
 55
 73
 84
 70

 .035
 18
 27
 36
 27

 .035
 29
 43
 55
 42

 52

 .041
 8

 10
 14
 11

 .045
 12
 19
 30
 20

 .029
 32
 53
 66
 50

 .019
 17
 29
 40
 29

 28

 .039
 34
 54
 72
 53

 .030
 27
 44
 60
 44

 .044
 6
 8
 13
 9

 .043
 9
 15
 24
 16

 .025
 26
 42
 55
 41

 .024
 20
 32
 47
 33

 .019
 17
 27
 37
 27

 32 (23)

 Note. When power = 0, the rates are Type I error; otherwise, rates are power values (expressed without %). P-mean =
 mean for power rates. G-mean = grand mean. Yuen(S) G-mean value in parentheses was obtained by averaging over
 four P-mean values [Chi-square (6), Chi-square (3), g = \lh = 0, and g=\/h = .5]. WILC = Wilcoxon-Mann-Whit
 ney rank sum test; RSKEW = specialized nonparametric test designed for positively skewed data; YUEN(A) and
 YUEN(S) = two versions of Yuen's (1974) modification of the Welch test with trimmed means and Winsorized vari
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 ed, all Type I error rates were very close to the .05 level of significance that was
 adopted to assess statistical significance.

 The power results in Table 2 indicate that (a) the specialized nonparametric
 test RSKEW was typically more sensitive in detecting treatment effects when the
 empirical data were skewed; (b) the specialized statistic based on asymmetric
 trimming [YUEN(A)], though more powerful than its symmetric trimming coun
 terpart [YUEN(S)] for skewed distributions, was not as sensitive as the nonpara
 metric procedures (either WILC or RSKEW); and (c) averaged over all nonnull
 distributions investigated (grand mean, or G-mean), the nonparametric tests
 resulted in similar power, and both were substantially more powerful than the
 tests based on trimmed means (see Table 2).

 In reference to Point a, the specialized nonparametric test RSKEW, as
 expected, was also less powerful than the usual Wilcoxon-Mann-Whitney test
 when the underlying distributions were symmetric. This finding also was not
 unexpected given that RSKEW was designed to be sensitive to detecting dif
 ferences when distributions are skewed to the right. With regard to Point b,
 power differences favoring asymmetric trimming when data were positively
 skewed were not as large as the differences favoring RSKEW over WILC.
 Indeed, averaged over all the nonsymmetric distributions (i.e., when g ^ 0), the
 rates were 28 and 23 for asymmetric versus symmetric trimming, respectively.
 Finally, in reference to Point c, when sample sizes were small, the nonpara
 metric tests resulted in substantially more power to detect treatment effects
 than did the Yuen (1974) test, which incorporates trimmed means. Our com
 parison between the nonparametric and trimmed means tests did not involve
 exactly comparable sample sizes (sample sizes were equal before trimming);
 thus, the trimmed tests were likely to have resulted in lower power values,
 although the power differences were greater than what we would have predict
 ed based on sample-size disparity. Nonetheless, it will be useful for researchers
 who are confronted with skewed distributions and are searching for alternatives
 to the classical procedure to know that our data indicate that for a fixed small
 sample size (e.g., eight observations per group), nonparametric procedures will
 likely result in substantially greater sensitivity to detect treatment effects than

 will tests involving trimmed means.
 To determine whether these results were generalizable beyond our sample size

 case of nx = n2 = 8, we replicated our study with nx-n2- 24. For this sample size,
 permutation tests (WILC and RSKEW) cannot be empirically investigated with
 simulation methods because SAS/IML (SAS Institute, 1989) does not allow paral
 lel processing. On a nonparallel processing mainframe computer, the simulation
 cannot be completed. However, we compared the trimmed procedures with normal
 approximation versions of the permutation tests. That is, for large sample sizes,

 WILC and RSKEW can be computed with normal approximation statistics (see
 Bradley, 1968, p. Ill, and Hogg et al., 1975). The methods of the simulation
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 TABLE 3
 Empirical type I Error and Power Rates (/ii = n2 = 24)

 Distribution  Power  WILC  RSKEW  YUEN(A)  YUEN(S)

 g = 0/h = 0

 ' = 0/h = .2

 Chi-square (6)

 Chi-square (3)

 g=\/h = 0

 g = 0/h = .5

 g=l/h = .5

 0
 .4
 .6
 .8

 P-mean

 0
 .4
 .6
 .8

 P-mean

 0
 .4
 .6
 .8

 P-mean

 0
 .4
 .6
 .8

 P-mean

 0
 .4
 .6
 .8

 P-mean

 0
 .4
 .6
 .8

 P-mean

 0
 .4
 .6
 .8

 P-mean

 G-mean

 .052
 41
 57
 77
 58

 .052
 31
 47
 64
 47

 .055
 46
 64
 84
 65

 .043
 57
 77
 91
 75

 .052
 48
 64
 79
 64

 .052
 26
 37
 52
 38

 .052
 29
 41
 55
 42

 56

 .060
 34
 50
 70
 51

 .060
 28
 41
 57
 42

 .047
 56
 75
 91
 74

 .040
 73
 89
 98
 87

 .060
 72
 89
 96
 85

 .060
 24
 32
 47
 34

 .060
 39
 57
 75
 57

 61

 .053
 8
 12
 13
 11

 .042
 17
 22
 29
 23

 .042
 41
 59
 77
 59

 .034
 22
 34
 44
 33

 32

 .054
 39
 59
 77
 58

 .053
 32
 48
 67
 49

 .050
 7
 9
 11
 9

 .043
 14
 17
 21
 17

 .040
 30
 47
 61
 46

 .045
 27
 41
 54
 41

 .031
 21
 33
 44
 33

 36 (26)

 Note. When power = 0, the rates are Type I error; otherwise, rates are power values (expressed without %). P-mean =
 mean for power rates. G-mean = grand mean. Yuen(S) G-mean value in parentheses was obtained by averaging over
 four P-mean values [Chi-square (6), Chi-square (3), g=\/h = 0, and g=\/h = .5]. WILC = Wilcoxon-Mann-Whit
 ney rank sum test; RSKEW = specialized nonparametric test designed for positively skewed data; YUEN(A) and
 YUEN(S) = two versions of Yuen's (1974) modification of the Welch test with trimmed means and Winsorized vari
 ances.
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 remained the same except for sample sizes. (Means were rescaled to achieve the a
 priori values of .4, .6, and .8.) The results for nx = n2 = 24 are presented in Table 3.

 The findings reported for Table 2 do indeed hold for larger sample sizes (see
 Table 3). However, the G-mean WILC and RSKEW values were slightly more
 divergent, favoring RSKEW, and power differences favoring the nonparametric
 tests were slightly larger.

 Discussion

 Because nonnormality, in particular, skewness of the data, negatively affects
 the ability of Student's two-sample t test to detect treatment effects, researchers
 have recommended adopting an alternative test statistic (see Penfield, 1994).
 Popular alternatives include nonparametric methods (e.g., Wilcoxon
 Mann-Whitney rank sum test) as well as methods that use robust estimators
 (e.g., trimmed means).
 When data are known to be skewed, researchers can adopt tests that have

 been designed to be more powerful to detect treatment effects. For example,
 Randies and Wolfe (1979; see also Berry, 1995) presented a nonparametric test,
 RSKEW, that was designed for positively skewed data. On the other hand, tests
 using robust estimators, such as trimmed means and Winsorized variances,
 have also been developed to capitalize on data that take a particular form, that
 is, positively skewed.

 In our investigation, we compared four test statistics in the two-sample prob
 lem; two tests, one nonparametric and one involving trimmed means and Win
 sorized variances, did not take the shape of the data distributions into account,
 whereas the remaining two tests, again one nonparametric and one involving
 trimmed means and Winsorized variances, did.

 Our results indicated that, as expected, researchers can achieve greater
 power to detect treatment effects when using the specialized tests with data that
 are skewed to the right. However, readers should remember the caveat that if
 distributions are not skewed to the right, these specialized tests will have less
 power than the nonspecialized nonparametric and trimmed-means alternatives
 defined in this article. On balance, that is, averaged over all the nonnormal dis
 tributions investigated, there was either no difference or very little difference
 favoring the specialized tests. Accordingly, based on the conditions explored in
 this investigation, we do not recommend that researchers adopt either of the
 two specialized tests. What researchers should do, however, is seriously con
 sider abandoning the classical methods in favor of some alternative that will
 provide both reliable and valid rates of Type I and Type II errors. With regard
 to power superiority, our results indicate that researchers can expect substan
 tial gains when adopting the nonparametric approach as compared with tests
 based on trimmed means.
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 NOTE

 This research was supported by a Natural Sciences and Engineering Research Council of Canada grant
 (OGP0015855) to the first author.
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