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Abstract 

When structural equation modeling (SEM) analyses are conducted, significance tests for 

all important model relationships (parameters including factor loadings, covariances, etc.) 

are typically conducted at a specified nominal Type I error rate (α). Despite the fact that 

many significance tests are often conducted in SEM, rarely is multiplicity control applied. 

Cribbie (2000, 2007) demonstrated that without some form of adjustment, the familywise 

Type I error rate can become severely inflated. Cribbie also confirmed that the popular 

Bonferroni method was overly conservative due to the correlations among the parameters 

in the model. The purpose of this study was to compare the Type I error rates and per-

parameter power of traditional multiplicity strategies with those of adjusted Bonferroni 

procedures that incorporate not only the number of tests in a family, but also the degree 

of correlation between parameters. The adjusted Bonferroni procedures were found to 

produce per-parameter power rates higher than the original Bonferroni procedure without 

inflating the familywise error rate.
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Significance Testing in Structural Equation Modeling: 

Incorporating Parameter Dependencies into Multiplicity Controlling Procedures 

 

 Structural equation modeling (SEM) is capable of assessing models in which 

complex multivariate interrelationships are hypothesized, and is therefore well suited to 

address research questions that are typical within psychology, education, business and 

other related fields. SEM has steadily gained popularity and a large body of research has 

emerged around fit indices, estimation methods, and assumption violations. However, 

relatively little attention has been paid to the issue of inflated Type I error rates when the 

statistical significance of multiple parameters is evaluated within a model. 

 When a large number of pairwise comparisons are conducted in a mean difference 

analysis, some form of error control is generally considered necessary and is almost 

universally applied (e.g., post hoc tests for a one-way ANOVA). It is commonly 

understood that when k tests, where k represents the number of pairwise tests conducted 

(not the number of means being compared), are performed at a specific nominal Type I 

error rate (αper test), that the probability of committing one or more Type I errors within the 

set or ‘family’ of tests (αfamilywise) increases with the number of comparisons.  

 If all of the tests conducted are independent, then the overall error rate becomes 

αfamilywise = 1 - (1 - αper test)
k, which is roughly equal to kαper test. Note that independent tests 

represent the worst-case in terms of the expected number of Type I errors. If the tests 

were completely dependent, then αfamilywise would equal αper test, since if one test was in 

error, so are all the rest. Correlated tests (0 < |ρ| < 1) therefore fall between these two 

possibilities, and if no multiplicity control is imposed and all correlated tests are 



conducted at αper test, αfamilywise will become inflated. This situation is generally considered 

unacceptable and familywise error control is usually imposed by adjusting αper test for each 

of the pairwise comparisons, holding αfamilywise at an acceptable threshold, albeit at the 

expense of statistical power.  

 In contrast, consider a typical structural model. After an adequate overall model fit 

has been obtained, significance tests for all important model relationships (e.g., 

directional and non-directional structural model parameters) are conducted at a specified 

α, such as .05. Despite the fact that many significance tests are often conducted in SEM, 

rarely is multiplicity control applied as it was in the preceding example. A prominent 

reason for this is the claim that because parameters in SEM are likely to be correlated, 

traditional methods of Type I error control are too conservative (Mulaik, 2004; Owen, 

2004; Ronis, 2002). Cribbie (2000, 2007) demonstrated that without some form of 

adjustment, the familywise Type I error rate can become severely inflated. Cribbie also 

confirmed that the popular Bonferroni method was overly conservative due to the 

correlations among the parameters in the model, and recommended more powerful 

familywise and false discovery rate controlling methods. 

One important limitation of the previous studies by Cribbie (2000, 2007) is that 

there was no correction for the degree of dependency among the parameters. Therefore, 

the purpose of this study is to investigate potential adjustments to the traditional 

Bonferroni procedure that incorporate information about the degree of relationship 

among the parameters in the model. A simulation study will be conducted to compare the 

familywise error rates and per-parameter power of the adjusted Bonferroni procedures, in 



contrast with no multiplicity control, and multiplicity control imposed via the traditional 

Bonferroni method.   

Adjusted Bonferroni Procedures 

 The original Bonferroni procedure is a strategy for controlling αfamilywise at α for a 

set of null hypothesis tests, where αper test is set equal to αfamilywise / k. Although the 

Bonferroni procedure is effective at providing strict αfamilywise control, the probability of 

Type II errors can become extremely high, especially when a large number of tests are 

conducted and/or the tests are highly related. Thus, the original Bonferroni procedure is 

not an ideal multiple testing procedure for SEM where there are often numerous 

parameters to be investigated and the correlations among the parameters are often high.  

 In this study we explore two adjusted Bonferroni procedures that incorporate the 

degree of interrelationship among the parameters in the model when establishing an 

appropriate adjusted αper test. Both adjusted Bonferroni methods were derived under the 

theory that if k null hypothesis tests are related then the optimal αper test is not αfamilywise / k, 

but instead a less stringent correction that incorporates the degree of interrelatedness 

among the parameters. More specifically, the two functions divided αfamilywise across the k 

tests similar to the Bonferroni procedure, however the severity of the adjustment was 

weakened with an increasing value of the average absolute correlation of parameter j with 

other parameters in the model ( rj ). The average absolute correlation ( rj ) of parameter j 

was chosen as an index of the extent to which the given parameter covaries with other 

parameters in the model. 

Adjusted Bonferroni 1 (AB1): 



a per test =
a familywise

k - (k -1) rj

. 

Adjusted Bonferroni 2 (AB2): 

a per test =
a familywise

k
1- rj

. 

Both of the derived functions respect two important properties.  First, if the correlation 

between tests is 0 (completely independent), the adjustments are equivalent to αfamilywise 

divided by k (the number of tests), which is equivalent to performing a traditional 

Bonferroni adjustment.  If the correlation between tests is equal to 1, indicating that they 

are perfectly correlated, the adjustment is equivalent to 1, indicating no adjustment for 

multiplicity. 

Method 

 A Monte Carlo study was conducted to compare the Type I error rates and per 

parameter power when no multiplicity control (NC), Bonferroni control, or adjusted 

Bonferroni control (AB1, AB2) was imposed for evaluating the statistical significance of 

multiple parameters in the structural portion of a latent variable model.  

Simulations were conducted for two models. Model A (Figure 1) had 237 degrees 

of freedom with 15 hypothesis tests in the structural model of which 4 were set to be null 

(the dashed lines in Figure 1).  These paths were fixed to zero in the population 

covariance matrix. Further, the latent variable variances were set to 1, factor loadings to 

0.8 and error variances to 0.36.  

Model B (Figure 2) had 565 degrees of freedom with 29 hypothesis tests in the 

structural model of which 6 were null. Type I error control was applied over all 



parameters in the structural model, thus the family of selected tests over which Type I 

error control was of size k = 15 for Model A and k = 29 for Model B. For the simulations 

model specification was achieved by fixing one factor loading per latent variable to one.  

Two primary variables were manipulated in this study: 1) the correlations among 

the parameters; and 2) sample size. The correlations between parameters were 

manipulated indirectly by varying the magnitude of the correlation between the latent 

variables in the population from which the samples were generated (rlatents = 0.1, 0.15, 

0.2, 0.25, 0.3, 0.35, 0.4, 0.45). Sample sizes utilized were N = 100 and N = 400.  

Type I error control was evaluated with respect to familywise error rates (i.e., the 

probability of declaring at least one null parameter statistically significant). Per-

parameter power was evaluated as the average proportion of nonzero parameters declared 

statistically significant. 

The simulation was conducted using R (R Development Core Team, 2010) 

employing the ‘sem’ package (Fox, 2006). One thousand simulations were conducted for 

each condition using a nominal significance level of α = .05. Two fit indices were utilized 

to verify that the fit of the models was acceptable, the Comparative Fit Index (CFI; 

Bentler, 1990) and the Root Mean Squared Error of Approximation (RMSEA; Steiger & 

Lind, 1980). 

Results 

 The pattern of results for the fit indices, familywise error rates and power were very 

similar across Models A and B and therefore only the results for Model B (with more null 

paths and therefore a greater probability of inflated familywise error rates) are discussed. 

Fit Indices 



 The RMSEA and CFI indicated an excellent fit of the models to the data, with 

CFI > .97 and RMSEA < .03 across all conditions investigated. 

Familywise Type I Error Rates 

Familywise error rates for N = 100 and 400, across the levels of parameter 

interrelatedness, are displayed in Figure 3. As expected, familywise Type I error rates far 

exceeded the per-parameter alpha of .05 when no multiplicity control (NC) was imposed, 

reaching values in excess of 0.25. The Bonferroni procedure was uniformly conservative, 

with familywise error rates hovering around .01. AB2 showed a very slight increase in 

familywise error rates over the Bonferroni procedure, while error rates for AB1 ranged 

from 2 to 3%. Both were below the nominal α-level of .05.  

Per-Parameter Power 

 The average per-parameter power for Model B with N = 100 and 400, for a subset 

of the levels of parameter interrelatedness, are displayed in Figure 4. For N = 100, with 

no multiplicity control (NC) the power ranged from 11% to 98% as the correlation 

between latent factors (and consequently between parameters) increased. The average 

power using the original Bonferroni correction was considerably lower, ranging from 1% 

to 77%. As expected, the average power rates for AB1 and AB2 fell between NC and 

Bonferroni. At all levels of correlation between latent factors, Adjustment 1 and 

Adjustment 2 had higher power than Bonferroni, with the largest differences seen in the 

mid-range. In particular, for rlatents = 0.35, the average per-parameter power for AB1 

exceeded Bonferroni by 11%, and AB2 was 28% higher than Bonferroni. 

For N = 400, per-parameter power quickly approached 100% (ceiling effect) as 

the correlations increased for all procedures, thus improvements in power were more 



restricted. AB1 offered 2% to 5% higher power than Bonferroni, and the power for AB2 

was 5% to 15% higher, with the largest improvement at rlatents = 0.2. 

Discussion 

 This investigation reconfirmed that without some form of adjustment to control the 

familywise Type I error rate, the probability of erroneously declaring one or more null 

parameters significant far exceeds the specified α-level. Furthermore, the popular 

Bonferroni adjustment is unacceptably conservative, resulting in an excessive penalty in 

statistical power. By incorporating both the number of tests in a family and the degree of 

correlation between parameters, two alternative adjustments have been shown to produce 

per-parameter power rates much closer to those obtained without multiplicity control 

without inflating the familywise error rate. More specifically, AB2 is recommended as it 

produced familywise error rates closest to α, and produced the greatest power of any of 

the familywise error controlling procedures. 

 With respect to the familywise error rate, one evident finding was that although the 

adjusted Bonferroni procedures significantly improved power, the familywise error rate 

was still consistently less than the nominal α. Thus, future research will hopefully explore 

even more powerful alternative procedures that bring the familywise error rate closer to α 

and the per-parameter power closer to no multiplicity control. Previous research that has 

attempted to consider the interrelatedness of the parameters via higher-order Bonferroni 

inequalities have found that the computations become excessively demanding even with 

very simple designs (e.g., Glaz, 1993). However, future research in this area may provide 

practical solutions that improve on the adjusted procedures discussed in this paper (e.g., 

Hoover, 1990). A related note is that in follow-up simulations to the results reported in 



this paper, we found that the adjusted Bonferroni procedures (AB1 and AB2) also 

produced greater power than more liberal alternative Bonferroni procedures such as 

Holm’s (1979) sequentially rejective step-down procedure, which considers the number 

of previously rejected hypotheses in adjusting the αper test, and thus, as discussed above, 

more powerful familywise error controlling alternatives to the adjusted Bonferroni 

methods presented in this paper will likely need to incorporate information about 

parameter relatedness. 

 It is worth noting that the described procedure need not be restricted to any 

particular portion of a structural model. For the purposes of this investigation Type I error 

control was applied specifically to the structural model, however there is no reason that 

multiplicity control could not also be imposed in other parts of the model. A researcher 

may choose to select a family of tests that includes any or all parameters (factor loadings, 

covariances, etc.) that are considered of particular interest within the context of the study.   

 To summarize, by incorporating a measure of the dependencies between SEM 

parameters into an adjusted Bonferroni procedure it is possible to achieve a form of 

multiplicity control that is far superior to the traditional Bonferroni procedure in terms of 

power, while still constraining the familywise Type I error rate below α. The availability 

of these adjusted Bonferroni procedures allows researchers to gain substantial power 

without compromising control of the familywise error rate. 
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Figure 1 

The first structural model investigated in the simulation study (Model A). 

 

 

Note: Dashed lines represent null parameters (i.e., Type I errors if declared statistically 

significant) and solid lines represent non-null parameters (i.e., a Type II error if not 

declared statistically significant). 



Figure 2 

The second structural model investigated in the simulation study (Model B). 

 

 

Note: Dashed lines represent null parameters (i.e., Type I errors if declared statistically 

significant) and solid lines represent non-null parameters (i.e., a Type II error if not 

declared statistically significant). 



Figure 3 

Familywise error rates for Model A (top row) and Model B (bottom row) at N = 100 and 

400 at 4 different degrees of parameter interrelatedness. 

 

 

 

 

 

 



Figure 4 

Per-parameter power for Model A (top row) and Model B (bottom row) at N = 100 and 

400 at 4 different degrees of parameter interrelatedness. 

 

 

  

 

 


