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Abstract 

 

When one wishes to show no meaningful differences among group means, equivalence tests 

should be used, as a nonsignificant test of mean difference does not provide evidence supporting 

equivalence. This research proposes two modified stepwise procedures for controlling the 

familywise Type I error rate, based on Caffo, Lauzon and Rohmel’s (2013) Bonferroni-type 

correction of k2/4 (where k is the number of groups to be compared). Using a Monte Carlo 

simulation method, we show that adopting a stepwise procedure increases power, while 

maintaining the familywise error rate at or below α. Implications for applied research and 

directions for future study are discussed.  

Keywords: Equivalence testing, familywise error, stepwise multiple comparison procedures.  
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A More Powerful Familywise Error Controlling 

Procedure for Evaluating Mean Equivalence 

Most null hypothesis significance tests are difference-based, meaning that they involve 

assessing a research hypothesis of a significant relationship, such as a difference between two 

means, using a null hypothesis of no relationship. However, the results of these tests do not 

always provide the proper evidence to support researchers’ claims. When the research hypothesis 

of interest is one of equivalence or a lack of association, traditional difference-based null 

hypothesis significance testing (NHST) cannot provide evidence of a lack of relationship (i.e., 

NHST cannot be used in support of the null being true). Recall that an absence of evidence for a 

difference does not mean there is evidence for an absence of an effect (Altman and Bland 1995). 

NHST is based on the probability of a test statistic given that the null hypothesis is true, so 

researchers’ null and alternative hypotheses must properly align with the research questions they 

wish to answer.  

If proper hypotheses are not being evaluated several consequences are possible, including 

implications for the statistical power of the test(s). For example, if a researcher is interested in 

demonstrating a lack of association but uses a traditional difference-based test, a larger sample 

size will decrease the probability of detecting the negligible relationship because H0 will be more 

likely to be rejected. Additionally, it is unlikely that the true effect is zero (as is specified by the 

null hypothesis of a traditional difference-based hypothesis), but rather that it is too small to be 

practically significant in a given area of research. This means that researchers’ goals should not 

be to demonstrate a zero effect, but rather that an effect is too small to be considered meaningful 

in a practical sense. Thus, alternative procedures known as equivalence tests have been 

developed to properly address these types of research questions.  
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Equivalence Testing 

Equivalence tests were developed in the biopharmaceutical field for researchers wishing 

to compare the bioavailability of two drugs (Anderson and Hauck 1983; Schuirmann 1987; 

Westlake 1976). Researchers needed a way to determine whether a new generic drug was similar 

enough to an existing brand-name version that it could be prescribed in the place of its more 

expensive counterpart, an example of a research hypothesis of equivalence rather than difference. 

Equivalence testing is a family of procedures with the goal of detecting a lack of association 

(e.g., mean equivalence, negligible correlation, lack of interaction). Thus, the null and alternate 

hypotheses for equivalence tests are effectively the opposite of traditional difference-based 

hypothesis tests: the null hypothesis states that there is some meaningful relationship among the 

variables of interest, while the alternative hypothesis states that there is no meaningful 

relationship. Thus, in equivalence testing a Type I error occurs when one erroneously concludes 

that there is no meaningful relationship between variables, whereas a Type II error occurs when 

one erroneously concludes that a relationship is too large to be considered inconsequential.  

The two one-sided tests (TOST; Schuirmann 1987) or confidence interval (Westlake, 

1976) approach to equivalence testing is the simplest form, and can be used, for example, to 

determine whether the difference between two population means is small enough that they can be 

considered equivalent. Evaluating whether means are equivalent using this approach involves 

first determining the smallest meaningful difference for the effect of interest, often denoted by 𝛿. 

Any difference equal to or larger than |𝛿| indicates that there is a meaningful difference among 

the groups, whereas any difference smaller than |𝛿| indicates that the difference is too small to be 

considered meaningful. Because the value δ is meant to quantify what is practically meaningful, 

researchers choose a value that is theoretically relevant to their research question (Rogers, 
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Howard and Vessey 1993). This can take on the form of a standardized effect size (e.g., Cohen’s 

d, Pearson’s r), a percentage mean difference, or a raw score difference on a well known 

measure. Importantly, this decision must be made a priori. Once researchers have determined an 

appropriate value for 𝛿, they conduct two one-sided t-tests with null hypotheses: 

𝐻01: 𝜇1 −  𝜇2  ≥  𝛿;   𝐻02: 𝜇1 −  𝜇2  ≤  −𝛿, 

where 𝜇1 −  𝜇2 is the difference between the population means of the two independent groups, to 

determine whether this observed difference is both smaller than 𝛿 and larger than –𝛿. If the null 

hypothesis is rejected for both tests, then the researchers can conclude that the groups are 

equivalent. Stated differently, both null hypotheses are also rejected if the 1-2α confidence 

interval about the mean difference falls within the equivalence interval, –𝛿 to 𝛿. If not, then the 

researcher does not have evidence to conclude equivalence. Similar to traditional difference-

based NHST, the non-rejection of the TOST cannot be taken as evidence supporting the null 

hypothesis of difference (Rogers et al. 1993). 

One-way Tests of Equivalence 

Since their introduction to applied researchers, equivalence tests have been adapted to fit 

with different kinds of commonly used statistical tests, including tests for comparing multiple 

independent groups. Wellek (2003) proposed a one-way F test to compare three or more group 

means in an equivalence testing framework, which Cribbie, Arpin-Cribbie, and Gruman (2009) 

showed to be more powerful than the common alternative of conducting all pairwise 

comparisons and concluding that all groups are equivalent if all pairwise means are declared 

equivalent. It is important to remember, however, that one-way F-tests, in both a difference and 

an equivalence framework, can at most tell us that our research hypotheses are partly supported. 

A non-significant F-statistic in a one-way equivalence test (i.e., with evidence that does not 
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support the research hypothesis) tells us that not all of the groups are equivalent; this could mean 

that none of the groups are similar enough to be deemed equivalent, or that some groups are 

similar enough while others are not. If one obtains a significant result from a difference-based F-

test, or a non-significant result from an equivalence-based F-test, they must then conduct 

multiple pairwise comparisons across all of the groups. It is important to recognize that, 

theoretically, rejection of the null hypothesis associated with the omnibus equivalence test 

provides evidence that all groups are equivalent and hence there is no need to conduct follow-up 

pairwise multiple comparisons. However, questions have been raised regarding the validity of 

omnibus tests in equivalence testing (e.g., Cribbie, Ragoonan, and Counsell 2016) as well as 

difference-based testing (e.g. Games 1971; Hancock and Klockars 1996), and hence we have 

chosen not to focus on the one-way test of equivalence as a gatekeeper, and instead we only 

discuss the pairwise comparisons. 

Familywise Error Rate and Pairwise Comparisons 

The problem with conducting post-hoc pairwise tests, each with a Type I error rate α, is 

that the potential to make a Type I error (i.e., erroneously rejecting the null hypothesis) increases 

as the number of tests increases. Thus, procedures to maintain the familywise error rate (FWER; 

αFW), or likelihood of making at least one Type I error across a set of tests, at α have been 

developed. The simplest method of controlling FWER is the Bonferroni correction (Dunn 1961), 

in which the nominal α level is adjusted by the total number of comparisons to be made (e.g., C 

= (
𝑘
2) for pairwise comparisons, where C is the total number of pairwise comparisons to be 

made, and k is the number of groups to be compared). This type of correction can be applied by 

dividing αFW by C such that for each comparison 𝛼𝑃𝑇 =  𝛼𝐹𝑊/ 𝐶, where 𝛼𝑃𝑇 is the nominal per-

test alpha level.  
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As with all equivalence tests, pairwise comparisons require different considerations from 

an equivalence framework than a difference framework. One important difference is that 

researchers conducting equivalence tests only need to control for potentially problematic Type I 

errors (Lauzon and Caffo 2009; Rohmel 2011). Any two means that are far enough apart that 

they would be very unlikely to be mistaken for equivalent (i.e., when a Type I error is highly 

unlikely) are considered non-problematic and are not controlled for. For example, in a 

difference-based framework if there is no difference between two means in the population and 

from our data we conclude that there is a statistically significant difference, then we make a Type 

I error – this means that any mean difference greater than or less than zero is a problem. 

However, in an equivalence-based framework, a Type I error is made when one concludes that 

there is no meaningful difference when in fact there is a meaningful difference. For example, if 

the true difference in the population has a value of Cohen’s d equal to three, then it is highly 

unlikely that we would ever erroneously conclude that the means are equivalent. However, if the 

true difference in the population has a Cohen’s d closer to zero, but the difference is still greater 

than δ, then we have a greater chance of erroneously concluding that the means are equivalent 

(i.e., making a Type I error).  This means that mean differences that fall close to, but just outside 

of, the predefined region of equivalence are the most problematic. Researchers (e.g., Rohmel 

2011) have defined the area from the border of the equivalence interval up to twice the border of 

the equivalence interval (i.e., |δ| ≤ µ1 - µ1 < |2𝛿|) as a region of problematic Type I errors. As 

Lauzon and Caffo show, any difference in a pair of means falling above this interval is large 

enough that falsely rejecting the null hypothesis would be highly unlikely. Recall that any 

difference in a pair of means falling below the lower bound of this interval is outside of the 

boundary of the null hypothesis of [-δ, δ], and is instead an instance of statistical power (see 
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Figure 1). Only controlling for these so called “problematic” Type I errors provides more power 

to detect equivalence. 

Researchers have attempted to use this region of potentially problematic Type I errors to 

develop a more powerful FWER control procedure for equivalence tests. Lauzon and Caffo 

(2009) proposed a Bonferroni-type correction to αPT. According to their proposal, scaling the 

nominal Type I error rate by a factor of (k – 1) provides sufficient Type I error control while 

resulting in a much less conservative rule than a traditional Bonferroni correction of C. They 

believed that this factor of (k – 1) only corrects for potentially problematic Type I errors (i.e., 

those pairs of means with a difference of |𝛿 < 2𝛿|), resulting in a more powerful test. The authors 

noted that the attractiveness of this correction comes with its ease of application, and that it may 

not be an optimal solution. Rohmel (2011) later showed that while Lauzon and Caffo’s 

correction of (k – 1) works for k = 3 (although for reasons Lauzon and Caffo did not consider), it 

is too liberal for k ≥ 4. Rohmel showed that a correction of αFW/ (k - 1) (i.e., αFW/2) is sufficient 

to control FWER for k = 3, but that a correction of αFW/4 is needed to control FWER for k = 4, 

and a correction of αFW/6 is needed to control FWER for k = 5.  

Building on these two studies, Caffo, Lauzon, and Rohmel (2013) proposed a Bonferroni-

type correction of αPT = αFW/(k2/4), where k2/4 represents the maximum number of comparisons, 

with k groups, falling in the problematic region of |δ| ≤ µ1 - µ1 < |2𝛿|. They found that this is a 

less conservative adjustment than a traditional Bonferroni correction of αPT = αFW / C, but still 

provides adequate FWER control. For more information on the technical validity of this 

procedure, see Caffo et al. (2013).  

Stepwise Bonferroni Procedures 
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While Cafflo, Lauzo and Rohmel’s procedure has been shown to control FWER at 

approximately α, research on multiple comparisons in a traditional difference-based framework 

shows that adopting a stepwise approach makes Bonferroni-type corrections even more powerful 

while still providing sufficient FWER control (Keselman, Cribbie, and Holland 2002). Holm’s 

step-down Bonferroni procedure (Holm 1979) and Hochberg’s step-up Bonferroni procedure 

(Hochberg 1988) are examples of such procedures. The rationale of these procedures is that they 

are less conservative by correcting αPT by a smaller factor at each step, while maintaining FWER 

at or below α. 

Holm’s step-down procedure controls the familywise error rate by adjusting the rejection 

criteria for each comparison. Let H1, …, HC be a family of hypotheses and P1, …, PC be their 

corresponding p-values, with the p-values ordered from smallest to largest. For a given nominal 

significance level 𝛼, let j be the minimal value where: 

𝑃𝑗 >  
𝛼

𝐶+1−𝑗
.                                                                   (1) 

Researchers reject the null hypotheses H1, …, H(j-1) and fail to reject the null hypotheses Hj, …, 

HC, where j = 1, …, C. If j = 1, researchers do not reject any of the null hypotheses. If no value 

of j satisfies the above equation, then researchers reject all of the null hypotheses. In other words, 

hypotheses are sequentially compared to a decreasingly adjusted 𝛼 level until the nominal 𝛼 

level is no longer greater than the observed p-value, at which point no further null hypotheses are 

rejected.  

Hochberg’s step-up procedure follows the same logic but proceeds in the opposite 

direction. Here, researchers let H1, …, HC be a family of hypotheses and P1, …, PC be their 

corresponding p-values, with the p-values ordered from largest to smallest. For a given nominal 

significance level 𝛼, let j be the minimal value where: 

Commented [RC1]: Please check this change. 



FAMILYWISE ERROR CONTROL FOR MEAN EQUIVALENCE TESTS 

 

10 

𝑃𝑗 ≤  
𝛼

𝐶+1−𝑗
.                                                             (2) 

Researchers reject the null hypotheses Hj, …, HC and fail to reject the null hypotheses H1, …, H(j 

– 1). If j = 1, researchers reject all of the null hypotheses. If no value of j satisfies the above 

equation, then researchers do not reject any of the null hypotheses. In other words, hypotheses 

are sequentially compared to an increasingly adjusted 𝛼 level until the nominal 𝛼 level is greater 

than the observed p-value, at which point the null hypotheses associated with all remaining 

(smaller) p-values are rejected. 

 Both Holm’s and Hochberg’s sequential Bonferroni procedures will always provide as 

much or more power than a traditional Bonferroni correction, as p-values P1, …, PC-1 are being 

compared to a less stringent nominal α, and PC is being compared to the same nominal α. The 

greatest increases in power can be seen when a number of the null hypotheses are “completely 

wrong” (Holm 1979); if n of C null hypotheses are completely wrong, these n hypotheses will be 

easily rejected in the first n steps, leaving the p-values that correspond to the remaining (C – n) 

hypotheses to be evaluated at an αPT = αFW/ (C – n), …, αFW / 2, αFW.  Additionally, Hochberg’s 

procedure has the ability to provide more power than Holm’s procedure, as its reverse sequential 

procedure leads researchers to infer significance of p-values greater than Pj. Despite their less 

conservative approaches, both of these procedures have also been shown to maintain FWER at 

approximately αFW. Taken together, this shows that sequential Bonferroni procedures have the 

capacity to appropriately control FWER, while not being excessively conservative as are 

traditional Bonferroni corrections.  

Current Study 

We propose stepwise multiple comparison procedures for equivalence testing to provide 

researchers with a more powerful version of Caffo and colleagues’ Bonferroni-type correction of 
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k2/4 (CB), while still controlling the Type I error rate for potentially problematic comparisons. 

Following the logic of Holm’s (1979) step-down procedure or Hochberg’s (1988) step-up 

procedure will provide more power while still maintaining strong control of αFW.  

Recall that k2/4 is the maximum number of potentially problematic comparisons with 

regards to Type I error (Caffo et al. 2013). In our adjusted Holm procedure (HM), we test the 

first C - k2/4 comparisons using a per-test α level of αPT = αFW / (k2/4). This means that at the 

test’s most conservative level it only corrects for the potentially problematic Type I error 

comparisons that fall within the problematic region of |δ| ≤ µ1 - µ1 < |2𝛿|. We then test the 

remaining k2/4 comparisons using Holm’s step-down procedure, with αPT = αFW / (k
2/4 – 1), …, 

αFW / 2, αFW. This combination of a stepwise procedure with Caffo and colleagues’ maximum 

correction of k2/4 is expected to provide more power than a simple Bonferroni correction of k2/4, 

while still providing sufficient Type I error control.  

In our adjusted Hochberg procedure (HB), we test the first C - k2/4 comparisons using 

Hochberg’s step-up procedure, with αPT = αFW, αFW / 2, …, αFW / (k
2/4 – 1), then test the 

remaining k2/4 comparisons using a per-test α level of αPT = αFW / (k2/4). In other words, the 

maximum correction factor in our procedure is again k2/4, only correcting for comparisons that 

fall within the problematic region of |δ| ≤ µ1 - µ2 < |2𝛿|, reflecting the need to only correct for 

potentially problematic Type I errors. As with HM, HB’s combination of a stepwise procedure 

with Caffo and colleagues’ maximum correction of k2/4 will provide significantly more power 

than CB while providing sufficient Type I error control. For an example of how these different 

procedures affect the conclusions of a test (i.e., how each procedure changes the critical αPT for 

each comparison), see Table 1.  

Simulation Study 

 



FAMILYWISE ERROR CONTROL FOR MEAN EQUIVALENCE TESTS 

 

12 

This study used Monte Carlo simulations to evaluate the Type I error rates and power of 

FWER correction procedures. Using simulations, we compared the CB correction with our 

proposed HM and HB stepwise procedures, as well as a traditional Bonferroni correction (BF; 

αPT = αFW / C), and no correction for multiplicity (NC; αPT = αFW). The 𝛿 for all tests was held 

constant at 20. Although we could have explored alternative values for δ, increasing or 

decreasing δ has the predictable effect of increasing or decreasing power, respectively. 5000 

simulations were conducted for each condition using R version 3.3.1 (R Core Team 2016), with 

all pairwise TOSTs being conducted using the equivalencetests package (Cribbie 2016). A 

familywise α level of .05 was set for all tests. For each test, FWERs, as well per-pair power rates 

(the average power across all non-null pairwise comparisons) and all-pairs power rates (the 

proportion of tests in which all pairs of equivalent means are correctly detected), were computed.  

Conditions 

 We manipulated the number of groups (k), average sample size per group (n), sample size 

equality/inequality, and population mean configuration. We assessed the effectiveness of these 

tests using k = 4, 7, and 10 independent groups, numbers meant to capture what is typically seen 

in psychological research. We used average sample sizes of n = 25 and n = 50, representing 

typical small and moderate group sample sizes in psychology. Group sample sizes were either 

equal or unequal, with unequal sample sizes either arranged in descending or ascending order. 

Across conditions, the population within-cell error variance (σ2) was set at 20. Details regarding 

the manipulated parameters used in the simulation study are provided in Table 2. 

 Population mean configurations were chosen to represent various possible combinations 

of problematic Type I error, non-problematic Type I error and power scenarios.  These 

configurations include three pure power conditions (i.e., all means falling within the equivalence 
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interval), three conditions with a mix of Type I error and power scenarios, including a “worst 

case scenario” condition (i.e., the maximum possible problematic Type I error scenarios for the 

given number of groups), and a pure Type I error condition (i.e., where all means all separated 

from all other means by ≥ 𝛿). See Table 3 for a list of all population mean configurations for 

each number of independent groups. All mean configurations were crossed with all other 

variables, resulting in 126 total conditions.  

 To better understand the worst case scenarios for Type I error rates (i.e., the situation in 

which the most Type I errors is possible for a given number of groups), let’s look at an example. 

When k = 7, C = 21 [i.e., C = (
7
2

)]. One might be tempted to think that the worst case scenario 

occurs with the greatest number of Type I error scenarios, or in other words, when the difference 

between all means is ≥ 𝛿 (e.g., 0, 20, 40, 60, 80, 100, 120). However, because the difference 

between many of the pairs of means is ≥ |2𝛿|), these comparisons are no longer problematic. In 

this scenario, only 6 out of 21 total pairwise comparisons fall in the region of potentially 

problematic comparisons (i.e., 0 vs 20, 20 vs 40, etc.). The worst case scenario in terms of Type I 

errors occurs when the maximum number of comparisons are potentially problematic. This 

occurs, in this situation, when approximately half of the means are 𝛿 greater than the other half 

(e.g., 0, 0, 0, 0, 20, 20, 20). In this scenario, the differences between 12 out of 21 pairs of means 

fall in the problematic region of |δ| ≤ µ1 - µ2 < |2𝛿|, meaning that more than half of the total 

pairwise comparisons are potentially problematic.  

Results 

 

 Selected results from the Monte Carlo simulations are presented in Tables 4-7. Similar 

patterns of results (i.e., power and Type I error rates) emerged across levels of equality of sample 
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size (equal or unequal), so they will be discussed together. For full simulation results, please 

contact the first author.  

Pure Type I Error Conditions 

 These mean configurations contained groups that were all separated from each other by ≥

𝛿. FWERs were maintained below α = .05 with all three k2/4 correction procedures (CB, HM and 

HB), with CB, HM and HB producing identical Type I error rates ranging from .01 - .04. In 

comparison, FWER for the BF ranged from .01 - .03, and for the uncorrected tests ranged from 

.14 - .28.  

Worst Case Scenario Conditions 

Type I Error 

 These mean configurations contained the maximum number of potentially problematic 

Type I error scenarios possible for the given number of groups, k. With k = 4, there is a 

maximum of 4 problematic Type I error scenarios out of a total of C = 6 pairwise comparisons, 

when k = 7 there is a maximum of 12 problematic Type I error scenarios out of C = 21 pairwise 

comparisons, and when k = 10 there is a maximum of 25 problematic Type I error scenarios out 

of C = 45 pairwise comparisons. As expected, these configurations produced the greatest FWER, 

particularly when the number of groups was large, however across all conditions, CB, HM and 

HB maintained FWER below α = .05. This result not only confirms the research of Caffo and 

colleagues, it also demonstrates that the FWER of the proposed HM and HB do not exceed α 

across the conditions studied. Meanwhile, FWER ranged from .02 - .03 for the BF correction, 

and from .15 - .50 for the NC comparisons.  

Power 
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In these mean configurations, HM and HB showed consistent but very slight per-pair and 

any-pairs power advantages over CB (i.e., < 1%). Per-pairs power rates ranged from .38 - .99 for 

the CB, HM and HB procedures, from .26 - .99 for the BF procedure, and from .93 – 1 for the 

NC tests. All-pairs power rates ranged from 0 - .99 for the CB, HM and HB procedures, from 0 - 

.97 for the BF procedure, and from .39 – 1 for the NC tests, with the highest rates seen, as 

expected, when k = 4 and n = 50.  

Partial Power Conditions 

 Type I Error 

 These mean configurations contained some comparisons with mean differences ≥ 𝛿 and 

some comparisons with mean differences < 𝛿. In these configurations, FWER was maintained 

below α = .05 (between .01 and .04) for the three k2/4 correction procedures (CB, HM, HB). In 

comparison, Type I error rates for the BF correction ranged from .001 - .02, and for the 

uncorrected tests ranged from .09 - .29.  

 Power 

Per-pair power rates showed small but consistent increases from the CB correction to the 

HM and HB corrections. Rates for the HM and HB corrections ranged from .16 – 1, with HB 

consistently providing slightly more power than HM. As expected, the highest rates were seen 

when k = 4 and n = 50. Power advantages over the CB correction ranged from 0 – .03 for both 

the HB and HM procedures. In comparison, per-pair power rates ranged from .11 – .99 with the 

BF correction, and from .57 – 1 for the NC tests.  

 All-pairs power rates also showed consistent increases from the CB correction to the HM 

and HB corrections. Rates for the HM and HB corrections ranged from 0 - .99, with again, as 

expected, the highest rates seen when k = 4 and n = 50. Increases over the CB correction ranged 
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from 0 – .22, corresponding to 1 to 16 times the power for the HM, and 1 to 25 times the power 

for the HB. In comparison, all-pairs power rates ranged from 0 – .98 with the BF correction, and 

from 0 – 1 with the NC comparisons.  

In these mean configurations, the greatest increases in power, particularly all-pairs power, 

over the CB procedure were seen when the number of groups was large (i.e., k = 10). For 

example, with means = 0, 0, 0, 0, 0, 0, 0, 0, 0, 20 and n = 50, the CB procedure produced an all-

pairs power rate of .39, while the HM and HB procedures produced rates of .61. This 

corresponds to an increase of .22, or 1.57 times the power. In comparison, the BF correction 

produced an all-pairs power rate of .26, while the NC test produced a rate of .96 (however recall 

that FWER for NC was > α).  

Pure Power Conditions 

These mean configurations consisted of means that all fell within the equivalence 

interval. The HM and HB corrections showed the greatest advantage over the CB correction 

when all means fell between 0 and 𝛿. Per-pair power rates showed significant variability, ranging 

from a low of .21 with the BF correction when k = 10, n = 25 and the means are further apart 

(i.e., ranging from 0 – 18), to a high of .98 with the NC tests when k = 10, n = 50 and the means 

are closer together (i.e., ranging from 0 – 9). For per-pairs power, the HM and HB corrections 

consistently produced slightly higher rates than the CB correction, with advantages of up to .12 

over CB when k = 10, n = 50 and the means are closer together.  

The greatest power advantage of the HM/HB over the CB were seen for all-pairs power 

rates. The CB, HM and HB corrections produced maximum all-pairs power rates of .59, .81 and 

.82, respectively, with the highest rates seen when k = 4, n = 50 and the means are closer 

together. In comparison, maximum all-pairs power rates approached .52 for the BF procedure 
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and .82 for the NC tests under the same conditions. Here, as expected, the HB correction showed 

identical power rates to NC tests across all conditions (since for the Hochberg to reject all 

hypotheses the first comparison, using αPT = αFW, must be significant which matches the αPT used 

for the uncorrected procedure), corresponding to power advantages of up to .57 over the CB 

procedure. The HM procedure produced advantages in all-pairs power of up to .47 over the CB 

procedure.  

For example, with means = 0, 1.5, 3, 4.5, 6, 7.5, 9 and n = 50, the CB procedure produced 

an all-pairs power rate of .20, while the HM procedure produced a rate of .66 and the HB 

procedure produced a rate of .71. This corresponds to respective increases of .47 and .57, or 3.34 

or 3.58 times the power. In comparison, the BF correction produced an all-pairs power rate of 

.14, while the NC test produced a rate of .71 (however recall that FWER for NC was > α).  

Overall Summary 

As expected, across all 126 conditions, NC had the highest power rates, followed by 

(respectively) the HB correction, the HM correction, the CB correction, and finally BF. Overall, 

as expected, the highest all-pairs power rates were seen when the number of groups was small 

(i.e., k = 4), the sample size per group was large (i.e., n = 50) and the means were close together 

(i.e., the mean configuration with the smallest variability for each value of k). The highest per-

pair power rates were also seen when the average sample size per cell was large and the means 

were close together, but there was no consistent pattern with regards to number of groups. 

Discussion 

 

 Pairwise comparisons from an equivalence testing framework require different 

considerations than pairwise comparisons from a traditional difference-based framework. 

Making a Type I error in an equivalence test involves concluding two means are similar enough 
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to be considered equivalent when they are in fact meaningfully different. Although the difference 

between means can increase to infinity, in practice one only needs to control for comparisons in 

which there is a reasonable chance of making a Type I error. Recall that Rohmel (2011) defined 

the region of potentially problematic Type I errors as the area from the equivalence interval up to 

twice the equivalence interval (i.e., |δ| ≤ µ1 - µ2 < |2𝛿|). Along with Caffo and Lauzon (2013), he 

showed that by only controlling for differences between means that fall within this region, 

equivalence tests have the ability to be more powerful than if they unnecessarily controlled for 

all differences in means, while still maintaining FWER control at or below α.  

 This study aimed to further increase power, while maintaining FWER closer to α, by 

utilizing Holm- and Hochberg-type sequential Bonferroni procedures. Our results show that 

adding a stepwise algorithm increased power over the CB correction, while maintaining 

familywise Type I error rates below α, in all configurations. The configurations that showed the 

most improvement in power fall into two main categories: configurations in which all means are 

in fact equivalent, and configurations in which some means are equivalent and there are a 

proportionately large number of equivalent means. Recall that this was shown by Holm (1979), 

who noted that sequential Bonferroni procedures provide the greatest increase in power when a 

number of the null hypotheses are “completely wrong”. Our modified sequential Bonferroni 

equivalence testing procedures show improved power when the total number of power 

comparisons (i.e., pairs of means that are in fact equivalent) is greater than (C - k2/4). This is due 

to the nature of our modifications of the stepwise procedures, which makes the maximum 

correction k2/4. Instead of adjusting αPT by C, …, 2, 1 in a Holm-type procedure or by 1, 2, …, C 

in a Hochberg-type procedure, our procedure involves adjusting αPT by k
2/4, …, 2, 1 in the HM 

procedure and by 1, 2, …, k2/4 in the HB procedure. This means that only the largest (k2/4 – 1) p-
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values are gaining power over Caffo and colleagues’ CB procedure, while the remaining (C – 

[k2/4 – 1]) are being corrected by the same factor of k2/4. This is different than the traditional 

Holm or Hochberg correction procedures in a difference-based framework, where all but the 

smallest p-value are being corrected by a smaller factor than with a Bonferroni correction. By 

this logic, a configuration of means must have greater than (C - k2/4) power comparisons in order 

for the HM or HB correction to provide increased power over the CB correction.  

In practical terms, this fact manifests itself in two ways. First, if not all means are in fact 

equivalent, the number of groups, k, must be greater than seven for our HM and HB corrections 

to provide more power than the CB correction. This is the minimum number of groups with 

which there can be more than (C - k2/4) power comparisons without all means falling within the 

equivalence interval. As our results show, the greatest increases in power over the CB procedure 

when not all means were equivalent were seen with 10 groups (see Tables 4 and 5). While all-

pairs power rates are generally lower with a large number of groups - as k increases, so does C, 

so it becomes harder to detect equivalence between all pairwise comparisons - these 

configurations provided the greatest opportunity for the HM and HB stepwise procedures to 

increase power over the traditional Bonferroni-type CB procedure.  

Second, our HM and HB corrections are always more powerful than the CB correction 

when all means are in fact equivalent (see Tables 6 and 7). This is because when all means are 

equivalent, (k2/4 – 1) out of C total comparisons will be adjusted by a more liberal factor with a 

stepwise correction than with a Bonferroni-type correction such as the CB. With our HB 

correction, all-pairs power rates are as high as with no correction at all, while still maintaining 

Type I error rates below, and close to, α, which is an extremely meaningful benefit to using a 

stepwise procedure. That being said, if the means are in fact equivalent and one conducts an 
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omnibus equivalence test as a gatekeeper before conducting pairwise comparisons, the omnibus 

test will likely be rejected and pairwise comparisons will therefore be unnecessary, stopping the 

analytic process before a Holm- or Hochberg-type procedure has a chance to show its greatest 

benefit. However, there is research to suggest that using an omnibus test as a gatekeeper is 

unwise. Cribbie, Arpin-Cribbie, and Gruman (2009) concluded that a one-way F test (e.g. 

Wellek 2003) is recommended over conducting all pairwise comparisons in an equivalence 

framework because existing approaches to conducting all pairwise comparisons were overly 

conservative. However, as mentioned earlier, Cribbie, Ragoonanan, and Counsell (2016) explain 

that the omnibus test can sometimes be incoherent with follow-up comparisons. That being said, 

if all pairwise comparisons are significant, the omnibus test is also expected to be significant. As 

Hancock and Klockars (1996) point out, the omnibus test is rarely of substantive interest and 

serves instead to provide Type I error control, which makes this test redundant if a pairwise 

comparison procedure exists which provides equivalent familywise error control. For these 

reasons, the development of a powerful pairwise comparison procedure that still controls FWER 

near α, such as HM or HB, makes it possible and preferable to only conduct all pairwise 

comparisons. Future research should directly compare the existing one-way F tests of 

equivalence (e.g., Wellek 2003) with these stepwise equivalence testing procedures to 

definitively show that conducting controlled pairwise comparisons is sufficiently powerful, while 

still not allowing differences ≥ 𝛿 to be declared equivalent.  

While both modified stepwise procedures provide increased power over the CB 

correction, the HB procedure provides the most power, with rates as high as an uncorrected test 

in some cases, while still consistently maintaining the Type I error rate below α. However, a 

Hochberg procedure requires positive dependence of p-values (i.e., when detecting a significant 
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difference,or equivalence, in one pair of means increases the chances of detecting a significant 

difference (or equivalence) in another; see Lehman 1966, Benjamini and Yekutieli 2001). For 

this reason, a Holm-type correction may be preferable for researchers who cannot guarantee this 

type of association.      

One limitation of the present simulation study is that the conclusions made are based on a 

finite number of conditions that have been tested. We cannot comment on how these tests will 

compare under different mean configurations, numbers of groups or sample sizes. However, the 

conditions for this study were chosen to simulate what is most commonly seen in applied 

research. Thus, while the results are only applicable to the conditions presented here, we have 

worked to ensure that the results we collected would reflect what researchers can anticipate to 

see in their own research as much as possible. Note that to simplify the presentation of the novel 

methods we have assumed that all assumptions are satisfied. Since the assumptions of normality 

and variance homogeneity are regularly violated, we encourage researchers to use robust 

statistics such as trimmed means with Welch-based test statistics (Cribbie et al. 2012). 

In summary, the present study sought to improve the statistical power of Caffo and 

colleagues’ Bonferroni-type correction of k2/4 when conducting all pairwise comparisons in 

equivalence testing. By simulating data with a number of different mean configurations, mean 

sample sizes, sample size configurations and numbers of groups to be compared, we were able to 

show that adopting a stepwise procedure (specifically a Holm-type step-down procedure, HM, or 

a Hochberg-type step-up procedure, HB) provides substantial additional power when the number 

of pairs of equivalent means is greater than (C - k2/4), a situation that we believe is common, 

while still maintaining familywise Type I error rates below α. The results of this study provide 
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researchers with a more powerful tool to assess mean equivalence with three or more groups, and 

offers an alternative to potentially problematic omnibus tests.  
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