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Are Normality and 
Homoscedasticity 
Really Fairy Tales?



Normality and 
Homoscedasticity • Wouldn’t it be great if all our 

distributions looked like this?
• Normal distributions with equal variability

• The Intro Stats Fallacy



Normality and 
Homoscedasticity

• However, many studies have 
reviewed the distributions of variables 
in Psychology and found normality 
and homoscedasticity to be rare



Introduction to 
Robust Measures



Rand Wilcox: 
Robust Statistics 

Guru!

“Absolute Legend” 
- Andy Field



Brief Note:
Design

I am going to focus exclusively 
on the two independent 
samples design

Population 2Population 1

Sample 1 Sample 2



Brief Note:
Transformations

Although transformations are 
an alternative to robust statistics, 
in addition to interpretation 
issues, they are not applicable in 
a wide range of situations



Introduction 
to Robust 
Statistics

• The primary goal of robust statistics 
is to limit the impact of superficial 
aspects of the data on the 
conclusions drawn from the data
• For example, limit the effects of 

nonnormality, outliers, unequal 
variances, etc. on conclusions 
pertaining to the magnitude of effects

• This is often phrased in terms of 
analyzing the bulk of the data



Central Tendency: 
Traditional 
Measure

•Mean (M)
• Arithmetic average

•𝑀𝑀 = ∑ 𝑋𝑋
𝑁𝑁



Central Tendency: 
Robust Measures

• Median (Mdn)
• Middle score of a sorted numeric variable

• Trimmed Mean (Mt)
• Mean of a variable after removing extreme 

observations
• 20% Trimmed Mean = mean after removing the 

most extreme 20% of observations from each tail
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Variability: 
Traditional 
Measure

• Standard Deviation (SD)

• Square root of the average squared 
deviation from the mean

•𝑆𝑆𝑆𝑆 = ∑ 𝑋𝑋− �𝑋𝑋 2

𝑁𝑁−1



Variability: 
Robust 

Measures

• Median Absolute Deviation (MAD)

• Median of the absolute deviations from the 
median

• Winsorized Standard Deviation (WSD)

• SD after replacing the extreme observations 
with less extreme observations 

• 20% WSD = SD after replacing the lowest and highest 20% of 
cases from each tail with the lowest and highest nonextreme value

2 5 7 12 14 15 15 15 17 21 22 25 34 42 58 72

12 12 12 12 14 15 15 15 17 21 22 25 34 34 34 34



Effect Sizes: 
Traditional 
Measure

•𝑑𝑑 = 𝑀𝑀1−𝑀𝑀2

𝑛𝑛1−1 𝑆𝑆𝑆𝑆1
2+ 𝑛𝑛1−1 𝑆𝑆𝑆𝑆1

2

𝑛𝑛1+𝑛𝑛2−2

Ordinary 
Cohen’s d: Not 

Robust



Effect Sizes: 
Robust  

Measures

• 𝑑𝑑𝑊𝑊 = 𝑀𝑀1−𝑀𝑀2

𝑆𝑆𝑆𝑆1
2+𝑆𝑆𝑆𝑆2

2

2

• 𝑑𝑑𝑟𝑟 = .642 𝑀𝑀𝑡𝑡𝑡−𝑀𝑀𝑡𝑡𝑡

𝑊𝑊𝑊𝑊𝑊𝑊1
2+𝑊𝑊𝑊𝑊𝑊𝑊2

2

2

Robust Cohen’s d: 
Robust to 

Heteroscedasticity 
and Nonnormality

Welch Cohen’s d: 
Robust to Variance 

Heterogeneity

The multiplier .642 puts 𝑑𝑑𝑟𝑟
on the same scale as a 

measure not incorporating 
WSD, with 20% trimming



Test Statistics: 
Traditional 
Measure

𝑡𝑡 = 𝑀𝑀1−𝑀𝑀2

𝑛𝑛1−1 𝑆𝑆𝑆𝑆1
2+ 𝑛𝑛1−1 𝑆𝑆𝑆𝑆1

2

𝑛𝑛1+𝑛𝑛2−2
1
𝑛𝑛1
+ 1
𝑛𝑛2

Ordinary t Test: 
Not Robust



Test Statistics: 
Robust 

Measures

𝑡𝑡𝑊𝑊 = 𝑀𝑀1−𝑀𝑀2

𝑆𝑆𝑆𝑆1
2

𝑛𝑛1
+𝑆𝑆𝑆𝑆2

2

𝑛𝑛2

𝑡𝑡𝑌𝑌 = 𝑀𝑀𝑡𝑡1−𝑀𝑀𝑡𝑡2

𝑛𝑛1−1 𝑊𝑊𝑊𝑊𝑊𝑊1
2

ℎ1 ℎ1−1
+ 𝑛𝑛2−1 𝑊𝑊𝑊𝑊𝑊𝑊2

2

ℎ2 ℎ2−1

Welch t Test: Robust to 
Heteroscedasticity

Yuen t Test: Robust to 
Heteroscedasticity and 

Nonnormality
h = sample size 
after trimming



Do Robust 
Measures Make 

a Difference?



Effect of Extreme Values on the Mean and 
Standard Deviation
● Effects of Extreme Values on the 

Mean and Standard Deviation
● X1 = {2 2 4 5 7 7 8 9 9 14}
● X2 = {2 2 4 5 7 7 8 9 9 38}

● The breakdown point of the M and 
SD is 1!

Descriptive 
Statistics

Mean Mdn Mt SD MAD WSD

X1 6.7 7 6.4 3.7 3.0 4.7

X2 9.1 7 6.4 10.5 3.0 4.7



Effect of Extreme Values on the Mean and 
Standard Deviation

● Effects of Nonnormality/ 
Heteroscedasticity on Cohen’s d

● One group has some extreme scores
– Imagine pre-post changes over an 

intervention for a control group and a 
clinical group

Effect 
Sizes



Effect of Extreme Values on the Mean and 
Standard Deviation● Effects of Extreme Scores on 

Cohen’s d

● 𝑑𝑑 = 𝑀𝑀1−𝑀𝑀2

𝑛𝑛1−1 𝑆𝑆𝑆𝑆1
2+ 𝑛𝑛1−1 𝑆𝑆𝑆𝑆1

2

𝑛𝑛1+𝑛𝑛2−2

= −.53

● 𝑑𝑑𝑟𝑟 = .642 𝑀𝑀𝑡𝑡𝑡−𝑀𝑀𝑡𝑡𝑡

𝑊𝑊𝑆𝑆𝑆𝑆1
2+𝑊𝑊𝑆𝑆𝑆𝑆1

2

2

= −1.40

Effect 
Sizes



Effect of Extreme Values on the Mean and 
Standard Deviation
● Traditional t Test

● Nonnormality and/or 
heteroscedasticity can have 
deleterious effects on the Type I 
error rates and power of traditional 
test statistics (e.g., t, F)

● If NHST-based results are a primary 
outcome, robust test statistics are 
definitely recommended
– E.g., Yuen test

Test
Statistics



Effect of Extreme Values on the Mean and 
Standard Deviation● p-Values for the Clinical vs 

Control Data
● Ordinary t Test 

– p = .051

● Welch t Test
– p = .009

● Yuen t Test
– p < .001

Test
Statistics



What can we do 
in the 

classroom?



• In an undergraduate Introduction to 
Statistics course, we might introduce 
them to:

Effect of nonnormality/outliers on 
measures of central tendency

Effect of nonnormality/outliers and 
heteroscedasticity on measures of 
effect size and NHST-based tests

Undergraduate 
Introductory 

Statistics Class



• In an undergraduate Introduction to 
Statistics course, we might introduce 
them to:

Robust measures of central tendency 
and variability

Robust effect size measures

Undergraduate 
Introductory 

Statistics Class



In a graduate Statistics course, we 
should be introducing students to the 
full complement of robust statistics

Graduate 
Statistics 
Courses



What can we 
do in the 

Classroom? 

• One way to allow students to visualize 
the advantages of robust statistics is 
via Shiny apps

• Here is a tiny example demonstrating 
the effects of nonnormality and 
variance heterogeneity on traditional 
and robust effect sizes (Cohen’s d)

• https://cribbie.shinyapps.io/Robust_Effect_Size/

https://cribbie.shinyapps.io/Robust_Effect_Size/


What if I use 
Statistical 

Software in my 
Course?

• Limitless robust statistics are 
available

•Trimmed Mean
•mean(x, tr=.1)

•Median Absolution Deviation
•mad(x)

•Winsorized Variance
•WRS2::winvar(x, tr=.1)

•Robust Cohen’s d
•WRS2::akp.effect(model)

•Welch t Test
•t.test(dv ~ iv)

•Yuen t Test 
•WRS2::yuen(dv ~ iv, tr=.1)



Textbook with 
Excellent 

Coverage of 
Robust Statistics!



Thank You!Rob Cribbie
cribbie@yorku.ca
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