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Why an Intro to Bayesian 
Regression at the QM Forum?

 I have been spewing about the advantages of Bayesian methods 
for years, but have had little experience applying the methods

 As a statistical consultant … I would like to feel confident 
recommending and conducting Bayesian analyses

 Grad students have limited exposure to Bayesian methods in classes
 Regression is the building block for many advanced methods (e.g., 

multilevel modeling, SEM)
 I would like to get feedback regarding my approach to the 

Bayesian regression analysis
 I had nothing better to talk about 



Outline

Why Use Bayesian Statistics?
Brief Introduction to Bayesian 

Inference and Model Fitting
Analyzing a Simple Regression in R via 

Bayesian Methods



Inference/Estimation from a Traditional 
Frequentist Perspective
 p-Values

 The probability of observing a test statistic as extreme, or more extreme, 
than that found, assuming the null hypothesis is true

 Common interpretational mistake
 The p-value is the probability that the null hypothesis is true

 95% Confidence Intervals (CIs)
 If we were to sample repeatedly from the population, and calculate a 

CI for each sample, 95% of the intervals would contain the population 
parameter

 Common interpretational mistake
 There is a 95% chance that the calculated CI contains the population 

parameter 



Sample Results: Regression, 
Frequentist Perspective

𝐻𝐻0: 𝑏𝑏𝑤𝑤𝑤𝑤∗ = 0



What can the researcher conclude?

 p-Value
 There is a 3.9% chance of observing a test statistic for the regression coefficient as 

extreme, or more extreme, than that found, assuming the partial relationship between  
work stability and resilience attitude is null in the population

 p(data|hypothesis)

 Confidence Interval
 If we were to sample repeatedly from the population, and calculate a CI for each 

sample, 95% of the intervals would contain the population partial regression coefficient

 Says nothing about the probability of the parameter falling in a certain interval

 Wouldn’t it be nice to be able to say something about the p(Null Hypothesis) or the 
probability that the regression coefficient falls within a given confidence interval?



Frequentist Model Fitting

 There is nothing more frustrating in model fitting than:

** ERROR ** model did NOT converge



Frequentist Model Fitting

 Bayesian models are typically estimated using Markov Chain 
Monte Carlo (MCMC)

Models that lead to convergence issues with ML, REML, etc. 
(e.g., many parameters, complex hierarchical structure) 
converge using MCMC.



Bayes Theorem

𝑝𝑝 𝐻𝐻 𝐷𝐷 = 𝑝𝑝 𝐷𝐷 𝐻𝐻 𝑝𝑝(𝐻𝐻)
𝑝𝑝(𝐷𝐷)

𝑝𝑝 𝐻𝐻 𝐷𝐷 = 𝑝𝑝 𝐷𝐷 𝐻𝐻 𝑝𝑝(𝐻𝐻)
∑1𝑁𝑁 𝑝𝑝 𝐷𝐷 𝐻𝐻 𝑝𝑝(𝐻𝐻)

N = number of possible hypotheses

𝑝𝑝 𝐻𝐻 𝐷𝐷 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

Main Point: We are 
solving for p(H|D), 

not P(D|H)!



Bayes Theorem

** This is applied to any 
parameter of interest



Definitions of Probability

Frequentist
Long run probability
E.g., probability of success in therapy (over many 

clients)

𝑝𝑝 𝑆𝑆 = # 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
# 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

The parameter [p(S)] is fixed, and we are using the 
data to try to detect it



Definitions of Probability

Bayesian
Parameters are not fixed

E.g., there is no TRUE p(S)

Instead, parameters can vary
Our job is to use prior beliefs and the data to determine the 

relative probability of observing the different possibilities for p(S)

The data and prior are fixed, but the parameter(s) can 
take on different values; probability is a degree of belief



Frequentist vs Bayesian Example



Prior, Likelihood and Posterior 
Distributions (small N)



Prior, Likelihood and Posterior 
Distributions (larger N)



Understanding the Posterior Distribution
The posterior distribution is the outcome of interest in Bayesian analysis

The posterior distribution represents the probability of an event (e.g., b), after all 
evidence (data) and background information have been taken into account

We can think of the posterior distribution as an updating of the prior distribution

The posterior can provide information regarding the probability of certain 
value for the parameter of interest
E.g., probability of a regression coefficient being greater than 0

E.g., probability of a regression coefficient > .4



Markov Chain Monte Carlo (MCMC)

An algorithm for sampling from probability 
distributions (Monte Carlo)

Samples are drawn such that the (k + 1)th sample is 
dependent on the kth sample
This process is called a Markov Chain

This allows the algorithm to narrow in on the 
quantity that is being approximated from the 
distribution (e.g., b), even with a large number of 
random variables



MCMC – Some Important Points
 The first step is drawing a ‘potential parameter’, after considering 

the prior and likelihood (proposal distribution)
 This is our first “guess” of the parameter

 We then draw another ‘potential parameter’, related to the first, 
and we compare the parameters in terms of which explains the 
data better

 Whether we “accept” a new parameter depends on how it 
explains the data relative to the previous parameter
 If it explains the data better, it is definitely kept
 if it does not explain the data as well, the probability of keeping the proposed 

parameter depends on how much worse it explains the data

 Preliminary “guesses” are thrown out as they are unlikely to 
be reliable (burn-in)



MCMC Example



MCMC Diagnostics
Mixing

Multiple chains are usually implemented (e.g., 3-5 chains)
 It is expected that all chains will sample the same parameter space (i.e., mix)



MCMC Diagnostics

Potential Scale Reduction Factor
Also known as the Gelman-Rubin Statistic or �𝑅𝑅

 �𝑅𝑅 = 𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑉𝑉𝑉𝑉𝑉𝑉𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

If convergence has been met, the between and within chain 
variance should be similar

 �𝑅𝑅 < 1.05 indicates convergence, whereas �𝑅𝑅 > 1.05 
indicates that more samples may be necessary for 
convergence
 �𝑅𝑅 > 1.25 can be indicative of convergence failure, such as 

chains heading towards local maxima



MCMC Diagnostics

Effective Sample Size
Due to autocorrelation in the samples, the effective number 

of samples will be less than the total number of samples
The higher the better (e.g., >25% of the total number of samples)

Monte Carlo Standard Error (per parameter)
The standard error of the mean of the posterior draws
MCSE should be small relative to the posterior standard 

deviation



MCMC Diagnostics

Posterior Predictive Check
If a model is a good fit, then we should be able to use it to 

generate values for the outcome that are very similar to what 
we observed
In other words, we can use our observed values on the predictor(s) 

and the final model to generate a posterior predictive distribution

Posterior Predictive Distribution Mean 
 If the mean of the posterior predictive distribution is not similar to 

the simple mean of the outcome variable, there may be 
convergence issues



Simple Regression

𝑌𝑌𝑖𝑖 = 𝑏𝑏0 + 𝑏𝑏1𝑋𝑋𝑖𝑖 + 𝑒𝑒𝑖𝑖
𝑏𝑏0 is the intercept (value of Y when X = 0)
𝑏𝑏1 is the expected change in Y for a 1 unit increase in X
𝑒𝑒𝑖𝑖 = residual = 𝑌𝑌𝑖𝑖 − 𝑏𝑏0 + 𝑏𝑏1𝑋𝑋𝑖𝑖

Parameters of Interest for Bayesian Analysis
𝑏𝑏0
𝑏𝑏1
σ𝑒𝑒 (standard deviation of the 𝑒𝑒𝑖𝑖)



Conjugate Priors on the Parameters

The normal distribution is a conjugate prior for the 
intercept and regression coefficient and the inverse 
gamma distribution is a conjugate prior for the 
residual variance (σ𝑒𝑒2)
Conjugate priors result in posteriors with the same 

distribution as the prior

𝑏𝑏0~𝑁𝑁(µ0_𝑏𝑏0 , τ0_𝑏𝑏0)

𝑏𝑏1~𝑁𝑁(µ0_𝑏𝑏1 , τ0_𝑏𝑏1)

 σ𝑒𝑒2~𝐼𝐼𝐼𝐼(α,β)



Default Priors for stan_glm

The normal distribution is the default prior for the 
intercept and regression coefficient and the 
exponential distribution is the default prior for the 
residual standard deviation (σ𝑒𝑒)

More specifically, the default priors are
𝑏𝑏0 ~ 𝑁𝑁(µ = �𝑌𝑌, σ = 2.5𝑠𝑠𝑌𝑌)
𝑏𝑏1 ~ 𝑁𝑁(µ = 0,σ = 2.5 ⁄𝑠𝑠𝑌𝑌 𝑠𝑠𝑋𝑋)
σ𝑒𝑒 ~ 𝐸𝐸𝐸𝐸𝐸𝐸(λ = 1/𝑠𝑠𝑌𝑌)



Informative Priors

 In many cases we have better “guesses” about the priors than 
the default priors
For example, previous (similar) studies exploring the relationship 

among the variables of interest
 E.g., imagine past results found b = .5, s = 1.5

We could set the prior for the regression coefficient accordingly
 𝑏𝑏1 ~ 𝑁𝑁(.5, 1.5)

But we might increase the scale of the prior to be conservative
 E.g., 𝑏𝑏1 ~ 𝑁𝑁(.5, 3)

 This is in the spirit of “updating” prior information via the data



Bayes Factor

 The ratio of the likelihood of one particular 
hypothesis (e.g., alternative) to the likelihood of 
another (e.g., null)
 Savage-Dickey Ratio

 I.e., weight of the evidence in favor of a given 
hypothesis

 𝐵𝐵𝐵𝐵 = 𝑃𝑃(𝐷𝐷|𝑀𝑀1)
𝑃𝑃(𝐷𝐷|𝑀𝑀2)

 𝐵𝐵𝐵𝐵 = 𝑃𝑃(𝐷𝐷|𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)
𝑃𝑃(𝐷𝐷|𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)



Bayes Factor



Time to try things out ….
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